

Web Application Firewall Policy File Specification

Foreword

This document provides instructions for configuring the Web Application Firewall (WAF) feature of the

Java EE language version of the OWASP Enterprise Security API (ESAPI). The ESAPI WAF provides

application developers with the capability to deploy virtual patches for security vulnerabilities until

underlying code can be fixed. It is implemented as a Java EE filter, which offers many advantages when

compared to many commercial and open source WAF alternatives.

We’d Like to Hear from You

Further development of ESAPI occurs through mailing list discussions and occasional workshops, and

suggestions for improvement are welcome. Please address comments and questions concerning the API

and this document to the ESAPI mail list, owasp-esapi@lists.owasp.org

Copyright and License

Copyright © 2009 The OWASP Foundation.

This document is released under the Creative Commons Attribution ShareAlike 3.0

license. For any reuse or distribution, you must make clear to others the license

terms of this work.

mailto:owasp-esapi@lists.owasp.org
http://creativecommons.org/licenses/by-sa/3.0/

This page is intentionally blank

1. Table of Contents

1. Table of Contents .. 4
2. The policy file .. 6
3. Aliases section ... 8

The name attribute (required) ... 8
The type attribute (optional) ... 8

4. Settings ... 9
The mode value (required) .. 9

The log mode (default) .. 9
The redirect mode ... 9

The block mode .. 9
The session-cookie-name value (optional) .. 10

The error-handling values .. 10
The default-redirect-page value .. 10
The block-status value... 10

5. Authentication rules .. 11
The path attribute (required) ... 11
The key attribute (required) ... 11
Path exceptions (optional) ... 11

6. Authorization rules .. 12
The restrict-source-ip rule ... 12

The type attribute (optional) ... 12
The ip-header attribute (optional) .. 12

The ip-regex attribute (required) .. 13
The must-match rule ... 13

The path attribute (required) ... 14

The variable attribute (required) .. 14
The operator attribute (required) .. 14
The value attribute (required) .. 15

7. URL rules ... 16
The restrict-extension rule ... 16

The deny and allow attributes (one is required) .. 16
The restrict-method rule .. 16

The deny and allow attributes (one is required) .. 16
The path attribute (optional) ... 17

The enforce-https rule .. 17
The path attribute (required) ... 17
Path exceptions (optional) ... 17

8. Header rules .. 18
The restrict-user-agent rule... 18

The deny and allow attributes (one is required) .. 18
The restrict-content-type rule .. 18

The deny and allow attributes (one is required) .. 18

9. Virtual patches... 20
The virtual-patch rule .. 20

The id attribute .. 20

The path attribute ... 20
The variable attribute ... 20

The pattern attribute ... 20
The message attribute ... 20

10. Outbound rules .. 22
The add-header rule ... 22

The path attribute ... 22
The name attribute (required) ... 22

The value attribute (required) ... 22
Path exceptions (optional) ... 22

The detect-content rule .. 22
The content-type attribute (required)... 23

The path attribute (optional) ... 23
The pattern attribute (required) .. 23

The dynamic-insertion rule ... 23

The content-type attribute (required)... 23
The path attribute (optional) ... 23

The pattern attribute (required) .. 23
The replacement value (required) .. 24

A note about dynamic-insertion and detect-content rules.. 24
The add-http-only-flag rule ... 24

The cookie value (required) .. 24

The name attribute (required) ... 24
The add-secure-flag rule .. 24

The cookie value (required) .. 25
The name attribute (required) ... 25

A note about adding flags to session cookies ... 25
11. Bean shell rules .. 26

The bean-shell-script rule ... 26

The id attribute (required) ... 26
The file attribute (required) ... 26
The stage attribute (required) ... 26
What does a BeanShell script look like? ... 27

2. The policy file

The ESAPI Web Application Firewall (WAF) is driven by an XML policy file that tells it what rules to

enforce in the application. These rules can do a number of things, from simple virtual patching to

complex authorization enforcement with BeanShell scripts.

This document describes the structure of the policy file, the individual rules and how they work. There

are also a number of examples in order to guide you during implementation. The following picture

shows you a visual representation of the policy file XSD, a formal specification for the layout of a policy

file:

As is seen, a policy file’s root element is policy, with no attributes. Inside the root policy element are a

number of rule sections. These are just categories of rules to help organize the policy file. As the middle

column shows, only the aliases and settings sections are required. With that in mind, here is an example

of a skeleton policy file with no rules to enforce. The meanings of the values in the settings section will

be described later.

<?xml version="1.0" encoding="UTF-8"?>

<policy>

 <aliases></aliases>

 <settings>

 <mode>block</mode>

 <session-cookie-name>JSESSIONID</session-cookie-name>

 <error-handling>

 <default-redirect-page>/error.jsp</default-redirect-page>

 <block-status>500</block-status>

 </error-handling>

 </settings>

</policy>

If you’re writing your own policy file it may be useful to start off with the “empty” file above and slowly

integrate rules. Each rule has an optional id attribute that can be used to uniquely identify every rule.

While not required, these id values can help you identify the rules that are fired in the logs.

The rest of the document is dedicated to discussing each of the rule sections shown above.

3. Aliases section

The <aliases> section lets you define common strings for use throughout the policy file. It can have 0 or

more <alias> elements within it.

Imagine a number of vulnerabilities have been found in one part of the site, within /admin/. Since there

are a number of rules that are going to reference that portion of the site, it’s useful to have a single

place to define that section of the site. It reduces the opportunity for mistyping a rule and helps make

rules more organized.

Here’s an example of an <aliases> section that only defines one alias:

<aliases>

 <alias name="ADMIN_PATH" type="regex">^/admin/.*</alias>

</aliases>

The name attribute (required)

The name of an alias is the identifier by which the alias will be referenced later on in the policy. It should

be something easy for a human to understand.

The type attribute (optional)

The type attribute tells the WAF if the string is a regular expression of a string literal. If none is specified,

the string is assumed to be a string literal. A value of “regex” tells the WAF that the string represents a

regular expression. It should be noted that the regular expression is written with Java regular expression

syntax.

4. Settings

The <settings> section is where the overall configuration settings of the WAF are set. The WAF basically

must learn two things after parsing this section: what mode WAF is the in, and how to perform error-

handling. Here’s an example of a <settings> section:

<settings>

 <mode>redirect</mode>

 <error-handling>

 <default-redirect-page>/security/error.jsp</default-redirect-page>

 <block-status>403</block-status>

 </error-handling>

</settings>

The mode value (required)

The mode indicates at a high level how to handle serious security events. Security events occur when

certain rule types match an incoming request. For instance, if a user trips a <virtual-patch> rule then the

application will do what the mode indicates. However, an <add-header> rule, which is intended to be

fired on every request, is usually an implementation of a security best practice doesn’t require any other

action to occur.

There are 3 legal values for this field: redirect, block, and log.

The log mode (default)

When mode is set to log, or any other value, the WAF only performs logging and does not perform any

other action when a security rule is tripped. This mode is useful for testing rules in production in order

to calibrate rules against false positives during a short “trial” period.

Setting the mode to any other value will not prevent the WAF from logging in the exact same way as

would occur if the mode were to set log. Specifying this only tells the WAF not to perform any other

actions.

The redirect mode

When the mode is set to redirect the application will redirect users to an error page with a 302 or

JavaScript client-side redirect, depending on the state of the application when the rule is tripped. The

URL to which the user is sent is set in the error-handling section.

The block mode

When the mode is set to block the application will simply stop processing the request and return a blank

response if a serious security error has occurred.

The session-cookie-name value (optional)

The session-cookie-name value tells the WAF what the application container’s session cookie name is. If

none is specified it is assumed to be JSESSIONID. This field is only used for any experimental

functionality and may be required in the future.

The error-handling values

There are two values within the error-handling block within settings: the default-redirect-page value

and the block-status value.

The default-redirect-page value

This URL is where users are redirected after a serious security event occurs when the WAF is in redirect

mode. It can be a relative or fully-qualified URL and will be used in a 302 or JavaScript on the client side.

It is recommended that this value be set to the location for a generic error page.

The block-status value

This value is an integer which indicates the HTTP code to be used when a serious security event occurs

while the WAF is in block mode. Typical values may be 401, 403 or 500. This value has no effect when

the WAF is in log or redirect mode.

5. Authentication rules

The <authentication-rules> section allows the WAF to enforce typical J2EE authentication requirements.

A typical J2EE application authentication pattern involves making sure a session variable exists inside

some base action class. If the variable doesn’t exist, the request is considered to be unauthenticated and

is handled appropriately. However, because applications support such a wide range of functionality and

partner services, mistakes are often made in protecting all functionality that requires authentication.

If this pattern can’t be used to authenticate users in your application, then you should not use this rule

type. Here is an example of an <authentication-rules> section that protects all of an application’s URL

endpoints except for a few things that are meant to be public:

<authentication-rules path="/.*" key="UserAuthKey" >

 <path-exception>/</path-exception>

 <path-exception>/index.html</path-exception>

 <path-exception>/login.jsp</path-exception>

 <path-exception>/index.jsp</path-exception>

 <path-exception type="regex">/images/.*</path-exception>

 <path-exception type="regex">/css/.*</path-exception>

 <path-exception type="regex">/help/.*</path-exception>

</authentication-rules>

The path attribute (required)

The path attribute tells the WAF what portion of the site requires authentication, in the form of a

regular expression. In the preceding example, the value of path is “/.*”, which means that

authentication will be forced on any request that reaches the application.

The key attribute (required)

The key attribute tells the WAF what session attribute should be checked for existence. If this session

attribute has any non-null value, the user will be assumed to be authenticated.

Path exceptions (optional)

There are a number of rules that can have nested path-exception values. A patch-exception tells the

WAF not to apply the given rule to a particular path. If the “type” attribute of the path-exception is set

to “regex”, the path is assumed to be a regular expression, otherwise it is assumed to be a string literal.

These path-exception values are used to unprotect static content, marketing material, and anything else

a user should be able to access without logging in.

6. Authorization rules

The <authorization-rules> section allows the WAF to enforce typical J2EE authorization requirements.

This section supports two different types of rules: restrict-source-ip rules and must-match rules.

The restrict-source-ip rule

Most applications are have a “normal” user interface and an “admin” user interface. Since they are

deployed together in the same application, “normal” users can access the administrator portion if they

can guess the correct URLs or steal the credentials of an administrator.

The restrict-source-ip rule helps with that problem by restricting access to certain paths in the

application according to IP. Enforcing this segmentation helps limit the damage done by exposed

administrator credentials and allows fine-grained network policy for reaching different tiers of an

application.

Here is an example restrict-source-ip rule:

<authorization-rules>

 <restrict-source-ip

 type="regex"

 ip-header="X-ORIGINAL-IP"

 ip-regex="(192\.168\.1\..*|127.0.0.1)">/admin/.*</restrict-source-ip>

</authorization-rules>

In this example our <authorization-rules> element has one entry, a restrict-source-ip rule that restricts

access to any URL beginning with /admin/ to those users coming from an IP that is either inside the local

LAN (192.168.1.*) or from the server itself.

The type attribute (optional)

The type attribute, when set to “regex”, tells the WAF that the path to be protected is a regular

expression as opposed to a string literal.

The ip-header attribute (optional)

The ip-header attribute tells the WAF the request header that will hold the original user’s true IP

address. Applications are often setup downstream of one or multiple proxy servers that would mask the

true original IP of the request. In this case, appliances often populate a request header with the true

original IP address of the request. In the preceding example, the user’s IP address can be found in the X-

ORIGINAL-IP header.

Not specifying this will tell the WAF to use the IP address found in the HttpServletRequest object.

The ip-regex attribute (required)

The ip-regex attribute should contain a regular expression that, when matched to an incoming request

IP address, should indicate that access be granted. In simple terms, you want to match the people you

want to access the sensitive part of the application, not the opposite.

The must-match rule

The must-match rule is a powerful construct that can be used to implement a number of different

functions, most notably authorization; specifically role-based access control checks.

Technically, the must-match rule works like this:

There are generally two places a J2EE application will look for a user’s roles when performing

authorization checks; in the session or in a request header. In the following example, the WAF will check

to see if a request header, called, X-ROLES (case sensitive), contains a substring “admin”. This pattern is

often used when an appliance (most notably CA SiteMinder) supplies trusted header values to

applications behind its perimeter.

<authorization-rules>

 <must-match

 path="^/admin/.*"

 variable="request.headers.X-ROLES"

 operator="contains"

 value="admin" />

</authorization-rules>

Here is an example of the alternative, where user roles are stored in a session variable called

org.acme.user.roles:

<authorization-rules>

 <must-match

 path="^/admin/.*"

 variable="session.org.acme.user.roles"

 operator="inList"

 value="admin" />

</authorization-rules>

In this example, the operator has been changed to inList, which will inspect the session variable set in

variable. The WAF knows how to inspect any subclass of java.util.Collection, java.util.Enumeration and

Does incoming request
path match? If not, pass.

Get list of user roles from
variable.

Check to see if the
expected value is in the

list. If not, fail. If so, pass.

java.util.Map, which include all the basic List objects. So, if you store your user roles in any of those

subclasses, the WAF can search through it for the value specified by the value attribute.

The path attribute (required)

The path attribute is a regular expression that decides which paths in the application to which this must-

match rule will apply.

The variable attribute (required)

The variable attribute tells the WAF where to search for the value attribute in order to grant access.

There are 5 places it understands where to find data:

Prefix Description

request.parameters.some_parameter

A request parameter, whether or not it came from the URL,

POST or multipart data.

request.headers.some_header

A request header.

request.uri

The request URI, not including any querystring data.

request.url

The request URL, including any querystring data.

The operator attribute (required)

The operator attribute tells the WAF what kind of operation to perform on the value attribute in respect

to the variable attribute. There are 4 legal values:

Operator Description

equals (default)

A simple String equals test between the variable and value.

exists

Checks to see if the variable is not null.

inList

Checks to see if the value is equal to an entry in the variable
list-type object.

Contains

Checks to see if the value is a substring of the variable.

The value attribute (required)

The value attribute indicates the value that you’re looking for in order to pass the test.

7. URL rules

The <url-rules> section allows a developer to perform checks on data that is sent in the HTTP status line,

the first line of the request. In this section you can restrict access based on file extension requested

(restrict-extension), the HTTP method requested (restrict-method) and whether or not the request is

over SSL (enforce-https).

The restrict-extension rule

The restrict-extension allows a developer to restrict access to certain file extensions on the server.

Assessments often find that sensitive static resources like code or libraries are found on the server

unprotected. If those problems are systemic or it is challenging to physically remove the files from the

server, you can use the restrict-extension rule.

The following example shows how to prevent any request for Java source files that were accidentally left

on the production server:

<url-rules>

 <restrict-extension deny=".java" />

</url-rules>

The deny and allow attributes (one is required)

A restrict-extension rule can have either deny or allow attributes, but not both. It is possible to have

multiple restrict-extension rules in place to have that intended effect, however. The value put into the

attribute chosen will be used to build a regular expression of the form: “.*\<value here>$”.

There are pros and cons of whitelisting (using the allow attribute) and blacklisting (using the deny

attribute) attribute. Depending on the circumstances of the problem, either answer may be preferable.

The restrict-method rule

By default, most application servers allow a number of methods that can be abused by users to allow

users to cause unintended actions. The restrict-method rule allows a developer to prevent requests with

unwanted methods from reaching a portion of the application.

The following examples shows a <url-rules> section with two restrict-method rules:

<url-rules>

 <restrict-method deny="GET" path=".*\.do$" />

 <restrict-method allow="^(GET|POST|HEAD)$" />

</url-rules>

The deny and allow attributes (one is required)

A restrict-method rule can have either deny or allow attributes, but not both. It is possible to have

multiple restrict-method rules in place to have that intended effect, however. The value put into the

attribute chosen is a regular expression test.

There are pros and cons of whitelisting (using the allow attribute) and blacklisting (using the deny

attribute) attribute. Depending on the circumstances of the problem, either answer may be preferable.

The path attribute (optional)

The path attribute gives the WAF a regular expression to decide when to apply this rule. If the URL
matches the path regular expression, the rule will be tested.

The enforce-https rule

Applications should always try to use SSL, whenever possible. If the application uses relative links and

doesn’t enforce the use of SSL, it’s possible than an attacker could trick a victim into clicking on a non-

SSL link, possibly causing them to expose sensitive information.

To prevent this, there is an enforce-https rule. The following example shows how to enforce the use of

SSL throughout the site, with a few simple exceptions for static, non-sensitive content. If the user makes

a non-SSL request for a path that matches the rule, they will be redirected to the same URL, but over

SSL, in a client-side 302 redirect.

<url-rules>

 <enforce-https path="/.*">

 <path-exception>/index.html</path-exception>

 <path-exception type="regex">/images/.*</path-exception>

 <path-exception type="regex">/help/.*</path-exception>

 </enforce-https>

</url-rules>

The path attribute (required)

The path attribute dictates what portion of the site should enforce the usage of SSL. Any exceptions

should be listed in the path-exception values nested inside of the enforce-https element.

Path exceptions (optional)

There are a number of rules that can have nested path-exception values. A patch-exception tells the

WAF not to apply the given rule to a particular path. If the “type” attribute of the path-exception is set

to “regex”, the path is assumed to be a regular expression, otherwise it is assumed to be a string literal.

These path-exception values are used to unprotect static content, marketing material, and anything else

a user should be able to access over an insecure channel.

8. Header rules

The <header-rules> section allows a developer to perform checks on data that is sent in HTTP request

headers. In this section you can restrict access based on user agent (restrict-user-agent) or content-type

(restrict-content-type).

The restrict-user-agent rule

The restrict-user-agent allows a developer to restrict access to the site according to user agent. There

are some user agents that indicate openly unwanted traffic, like automated search engine robots. Also,

novice attackers will sometimes use attack tools that broadcast their nature in the user agent header.

The following example shows two restrict-user-agent rules that prevent Google robot traffic and allow

all other traffic:

<header-rules>

 <restrict-user-agent deny=".*GoogleBot.*" />

 <restrict-user-agent allow=".*" />

</header-rules>

The deny and allow attributes (one is required)

A restrict-user-agent rule can have either deny or allow attributes, but not both. It is possible to have

multiple restrict-user-agent rules in place to have that intended effect, however. The value put into the

attribute chosen is a regular expression.

There are pros and cons of whitelisting (using the allow attribute) and blacklisting (using the deny

attribute) attribute. Depending on the circumstances of the problem, either answer may be preferable.

The restrict-content-type rule

The restrict-content-type allows a developer to restrict access to the site according to the request

content type. Abnormal content-types can be indicators of CSRF attacks and can be used to try to bypass

security mechanisms.

The following example shows two restrict-content-type rules that prevent multipart traffic and allow all

other text traffic:

<header-rules>

 <restrict-content-type deny=".*multipart.*" />

 <restrict-content-type allow=".*" />

</header-rules>

The deny and allow attributes (one is required)

A restrict-content-type rule can have either deny or allow attributes, but not both. It is possible to have

multiple restrict-content-type rules in place to have that intended effect, however. The value put into

the attribute chosen is a regular expression.

There are pros and cons of whitelisting (using the allow attribute) and blacklisting (using the deny

attribute) attribute. Depending on the circumstances of the problem, either answer may be preferable.

9. Virtual patches

The <virtual-patches> section allows a developer to implement virtual patches against known attacks,

like unchecked redirects, XSS and SQL injection, among others. It can have 0 or more virtual-patch rules.

The virtual-patch rule

The virtual-patch rule is one of the most important rules in the WAF policy. Many attacks discoverable

with automated tools can be fixed with a virtual-patch. The following example of a virtual patch patches

a simple cross-site scripting (XSS) vulnerability:

<virtual-patch

 id="scr-15520"

 path="/foobar.jsp"

 variable="request.parameters.q"

 pattern="^[0-9a-zA-Z\s,\.]$"

 message="detected exploit of SCR #15520" />

The id attribute

The id attribute should uniquely identify a particular virtual-patch. If a unique ID is used, log message

will be differentiable according to which rules were tripped.

The path attribute

The path attribute is a regular expression applied to the request URI. If it matches the rule will be tested.

The variable attribute

The variable attribute tells the WAF where to analyze with the pattern attribute. There are 2 places it

understands where to find data:

Prefix Description

request.parameters.some_parameter

A request parameter, whether or not it came from the URL,
POST or multipart data.

request.headers.some_header

A request header.

The pattern attribute

The pattern attribute is a regular expression applied to the value of the variable attribute. If the pattern

matches successfully, the request passes the test. If the pattern doesn’t match the requested value, it is

considered to be a failure, and the WAF will recognize it as a serious security event.

The message attribute

The message attribute is a literal string to be logged when the virtual-patch fails (indicating an attack). It

should be noted that the logger will automatically generate some of the most useful information

automatically, and this should be used to indicate to a human a succinct summation of what this rule

failure indicates.

10. Outbound rules

There are a number of things an application security expert will recommend that will require access to

outbound data before it is delivered to the end user. Some of these things include adding additional

headers to prevent caching or cross-domain attacks (add-header), or egress filtering to prevent data loss

(detect-content and dynamic-insertion). They may also include adding flags to container cookies (add-

http-only-flag and add-secure-flag). All of these are handled within the <outbound-rules> section.

The add-header rule

The add-header rule allows a developer to add custom headers to responses according to the path

requested.

The following example shows an add-header rule that tells IE8 browsers that the response should not be

allowed to be framed by any domain other than the current one:

<add-header name="X-FRAME-OPTIONS" value="SAMEORIGIN" path="/.*">

 <path-exception type="regex">/frame_me/.*</path-exception>

</add-header>

The path attribute

The path attribute is a regular expression applied to the request URI. If it matches the header will be

added, provided the path-exception values don’t match the path.

The name attribute (required)

The name attribute contains the name of the header to be added.

The value attribute (required)

The value attribute contains the value of the header to be added.

Path exceptions (optional)

There are a number of rules that can have nested path-exception values. A patch-exception tells the

WAF not to apply the given rule to a particular path. If the “type” attribute of the path-exception is set

to “regex”, the path is assumed to be a regular expression, otherwise it is assumed to be a string literal.

These path-exception values are used to unprotect public content.

The detect-content rule

The detect-content rule allows a developer to detect when certain data or patterns of data are sent to

the browser. Here is an example of a detect-content rule used to see when old dates are being sent to

the users in legally binding disclaimers:

<detect-content content-type=".*text/.*" pattern=".*2008.*" />

In more painfully realistic situations, developers may be interested in patterns being sent to the browser

that indicate a loss of sensitive data, like SSNs, credit cards, or other custom classified information.

The content-type attribute (required)

The content-type attribute allows the WAF to apply the detect-content rule only when the content type

of the outbound response matches the content-type attribute. This value is a regular expression. For

example, using a content-type of “.*text/.*” will make sure performance of the WAF won’t suffer as the

rule searches through binary data.

The path attribute (optional)

The path attribute is a regular expression applied to the request URI. If it matches the rule will be tested.

The pattern attribute (required)

The pattern attribute holds the regular expression that will detect the data the developer is looking to

discover.

The dynamic-insertion rule

The dynamic-insertion rule allows a developer to dynamically modify outbound response body data

sent to the browser. This can be used to in incident response or preventing information leakage.Here is

an example of a dynamic-insertion rule used to prevent commented stack traces from being sent to the

user:

<dynamic-insertion

 path="/err.jsp"

 pattern="<!-- BEGIN STACK TRACE.*-->">

 <replacement><![CDATA[stack trace removed]]></replacement>

</dynamic-insertion>

The content-type attribute (required)

The content-type attribute allows the WAF to apply the dynamic-insertion rule only when the content

type of the outbound response matches the content-type attribute. This value is a regular expression.

For example, using a content-type of “.*text/.*” will make sure performance of the WAF won’t suffer as

the rule searches through binary data.

It should be noted that if no content-type has been set on a response before it gets to the WAF, the

WAF will assume it is ISO-8895-1.

The path attribute (optional)

The path attribute is a regular expression applied to the request URI. If it matches the rule will be tested.

The pattern attribute (required)

The pattern attribute holds the regular expression that will detect the data the developer is looking to

replace.

The replacement value (required)

The replacement value holds the data the developer is looking to replace the detected content with.

One can use replacement groups within the detection pattern and replacement string, but this could

allow abuse if not done correctly.

A note about dynamic-insertion and detect-content rules

These rules only work if applications don’t try to manage their own output streaming. For instance, if an
application calls flush() on its response object to partially push results to the user, the WAF will not have
access to the entire response when the “checking” of these two types of rules occur. The rules will claim
the sought after content is not present since there is nothing in the buffer to check.

The add-http-only-flag rule

The add-http-only-flag rule allows a developer to automatically add the HTTPOnly flag to custom

cookies.

The following example shows an add-http-only-flag rule that tells the WAF to make sure the HTTPOnly

flag is applied to all cookies:

<add-http-only-flag>

 <cookie name=".*" />

</add-http-only-flag>

The cookie value (required)

As is shown, the add-http-only-flag rule has no attributes, except for the always optional id attribute. It

does, however, have zero or more cookie elements nested within it. Those cookie elements themselves

only have one attribute, name.

The name attribute (required)

The name attribute is a regular expression that should match 1 or more of the cookies that require the

HTTPOnly flag. Because you can have multiple cookie elements, one does not need to create a complex

regular expression to match them all – each cookie can have its own element and it can be written as a

string literal. However, it was made a regular expression in order to make adding all cookies, regardless

of their runtime name, have the flag added.

The add-secure-flag rule

The add-secure-flag rule allows a developer to automatically add the secure flag to custom cookies.

The following example shows an add-secure-flag rule that tells the WAF to make sure the secure flag is

applied to all cookies:

<add-secure-flag>

 <cookie name=".*" />

</add-secure-flag>

The cookie value (required)

As is shown, the add-secure-flag rule has no attributes, except for the always optional id attribute. It

does, however, have zero or more cookie elements nested within it. Those cookie elements themselves

only have one attribute, name.

The name attribute (required)

The name attribute is a regular expression that should match 1 or more of the cookies that require the

secure flag. Because you can have multiple cookie elements, one does not need to create a complex

regular expression to match them all – each cookie can have its own element and it can be written as a

string literal. However, it was made a regular expression in order to make adding all cookies, regardless

of their runtime name, have the flag added.

A note about adding flags to session cookies

While adding flags is fairly easy for the WAF to accomplish with custom cookies added by standard J2EE
methods, it is fairly difficult to apply to container cookies, like an application server’s standard session
cookie.

Because the standard session cookie is not created during the lifetime of the WAF instance or within its
technical capability to alter, the WAF must go to considerable lengths to make this happen. Given
different browser behavior regarding cookie management, this issue scales up in complexity quickly. A
WAF solution would require multiple (up to 6) separate HTTP communications in order to reliably attach
HTTPOnly or the secure flag to session cookies.

Rather than attempt to manage this complexity, it was decided that the WAF should only add these flags
to cookies it produced with standard J2EE methods. Most application containers allow developers to
add this flag to their session cookies through configuration.

11. Bean shell rules

The <bean-shell-rules> section allows a developer to specify zero or more BeanShell scripts to be run for

complex attack detection. Some security decisions aren’t simple enough to be made from an XML-driven

configuration file, no matter how flexible. The bean-shell-script rule allows developers to truly

implement code at runtime to perform complex defense.

The following is an example of a bean-shell-rules section with one bean-shell-script rule defined:

<bean-shell-rules>

 <bean-shell-script

 id="example1"

 file="src/WAF/bean-shell-rule.bsh"

 stage="before-request-body"/>

</bean-shell-rules>

The bean-shell-script rule

The bean-shell-script rule is a powerful rule for scripting defensive code in Java without any code

changes.

The id attribute (required)

The id attribute, although usually optional, is intended to be used as a unique identifier for BeanShell

scripts and is thus required.

The file attribute (required)

The file attribute should be a relative path from the current working directory that contains the

BeanShell script to be executed.

The stage attribute (required)

The stage attribute indicates during what stage the BeanShell script located at the file attribute should

be executed. There are 3 legal values for this field:

Stage value Description

before-request-body
The script will be executed before any multipart POST data
is read, but all normal request.getParameter() values will be
accessible.

after-request-body
The script will be executed after any multipart POST data is
read. All normal request.getParameter() values as well as
multipart form fields will be available.

before-response
The script will be executed directly before the response is
sent to the user.

What does a BeanShell script look like?

Understanding BeanShell itself is outside of the scope of this document, but a BeanShell script is

essentially just free-standing Java code. Your BeanShell scripts will need access to some contextual data

in order to perform security checks, so there are a number of objects exposed to each BeanShell script:

Variable name Class Description

request

The request for which this rule is firing.

javax.servlet.http.HttpServletRequest

response

The response associated with this
request. If the user has WAF rules that
require access to outbound data, the
ESAPI WAF response class will be used.
Otherwise, the normal J2EE instance is
in this placeholder.

If you’re not sure which you’ll be using
and you need access to a particular
one, you can use the instanceof Java
keyword to figure out which one you
have. In the script.

javax.servlet.http.HttpServletRequest
or

org.owasp.esapi.waf.internal.
InterceptingHTTPServletResponse

session

The session object associated with this
request. If this is the first request in the
session, this value may be null.

javax.servlet.http.HttpSession

action

This variable, when passed into the
script, is initially null. There is a contract
in place regarding its usage. If you
assign a valid Action subclass to this
variable, that action will be performed
at the end of the rule. This allows
developers to execute customized
actions based on the result of the
BeanShell script.

If this variable is still null after the
BeanShell script executes, no action will
be taken. For more information on the
Action subclasses, see the JavaDoc for
ESAPI (specifically
org.owasp.esapi.actions.*).

org.owasp.esapi.waf.actions.Action

A WAF BeanShell script should consist of 3 basic sections:

1. Imports. Import all the classes to perform your security check.

2. Do what you want. Perform the check you want

3. Tell the WAF the result. By setting the action variable to a new Action subclass, you tell

the WAF what you want to do.

