
SystemTap 4.2

SystemTap Beginners Guide

Introduction to SystemTap

Don Domingo

William Cohen

SystemTap Beginners Guide

SystemTap 4.2 SystemTap Beginners Guide
Introduction to SystemTap
Edition 4.2

Author Don Domingo ddomingo@redhat.com
Author William Cohen wcohen@redhat.com
Red Hat, Inc.
Copyright © 2013 Red Hat, Inc

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License version 2 as published by the Free Software Foundation.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write
to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

For more details see the file COPYING in the source distribution of Linux.

This guide provides basic instructions on how to use SystemTap to monitor different subsystems of a
Linux system in finer detail.

mailto:ddomingo@redhat.com
mailto:wcohen@redhat.com

Preface v
1. Document Conventions .. v

1.1. Typographic Conventions .. v
1.2. Pull-quote Conventions .. vi
1.3. Notes and Warnings .. vii

2. We Need Feedback! .. vii

1. Introduction 1
1.1. Documentation Goals ... 1
1.2. SystemTap Capabilities .. 1
1.3. Limitations of SystemTap .. 1

2. Using SystemTap 3
2.1. Installation and Setup ... 3

2.1.1. Installing SystemTap .. 3
2.1.2. Installing Required Kernel Information Packages Manually ... 3
2.1.3. Initial Testing ... 5

2.2. Generating Instrumentation for Other Computers ... 5
2.3. Running SystemTap Scripts .. 7

2.3.1. SystemTap Flight Recorder Mode .. 9
2.3.1.1. In-memory Flight Recorder .. 9
2.3.1.2. File Flight Recorder ... 10

3. Understanding How SystemTap Works 11
3.1. Architecture .. 11
3.2. SystemTap Scripts .. 11

3.2.1. Event .. 13
3.2.2. SystemTap Handler/Body ... 15

3.3. Basic SystemTap Handler Constructs .. 19
3.3.1. Variables ... 19
3.3.2. Target Variables .. 20

3.3.2.1. Pretty Printing Target Variables ... 22
3.3.2.2. Typecasting .. 23
3.3.2.3. Checking Target Variable Availability .. 23

3.3.3. Conditional Statements .. 24
3.3.4. Command-Line Arguments ... 25

3.4. Associative Arrays .. 26
3.5. Array Operations in SystemTap ... 26

3.5.1. Assigning an Associated Value ... 27
3.5.2. Reading Values From Arrays .. 27
3.5.3. Incrementing Associated Values ... 28
3.5.4. Processing Multiple Elements in an Array ... 28
3.5.5. Clearing/Deleting Arrays and Array Elements .. 29
3.5.6. Using Arrays in Conditional Statements .. 31
3.5.7. Computing for Statistical Aggregates .. 32

3.6. Tapsets .. 34

4. User-space Probing 35
4.1. User-Space Events ... 35
4.2. Accessing User-Space Target Variables .. 36
4.3. User-Space Stack Backtraces ... 37

iii

SystemTap Beginners Guide

5. Useful SystemTap Scripts 39
5.1. Network .. 39

5.1.1. Network Profiling .. 39
5.1.2. Tracing Functions Called in Network Socket Code ... 41
5.1.3. Monitoring Incoming TCP Connections ... 42
5.1.4. Monitoring TCP Packets ... 42
5.1.5. Monitoring Network Packets Drops in Kernel ... 44

5.2. Disk ... 45
5.2.1. Summarizing Disk Read/Write Traffic .. 45
5.2.2. Tracking I/O Time For Each File Read or Write ... 48
5.2.3. Track Cumulative IO .. 50
5.2.4. I/O Monitoring (By Device) ... 52
5.2.5. Monitoring Reads and Writes to a File .. 53
5.2.6. Monitoring Changes to File Attributes ... 54
5.2.7. Periodically Print I/O Block Time ... 54

5.3. Profiling .. 56
5.3.1. Counting Function Calls Made .. 56
5.3.2. Call Graph Tracing .. 57
5.3.3. Determining Time Spent in Kernel and User Space ... 58
5.3.4. Monitoring Polling Applications ... 60
5.3.5. Tracking Most Frequently Used System Calls .. 63
5.3.6. Tracking System Call Volume Per Process ... 64

5.4. Identifying Contended User-Space Locks ... 66

6. Understanding SystemTap Errors 69
6.1. Parse and Semantic Errors ... 69
6.2. Runtime Errors and Warnings ... 71

7. References 73

A. Revision History 75

Index 77

iv

Preface

1. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts1 set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not, alternative
but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later include the Liberation
Fonts set by default.

1.1. Typographic Conventions
Four typographic conventions are used to call attention to specific words and phrases. These conventions,
and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
keys and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current working
directory, enter the cat my_next_bestselling_novel command at the shell prompt
and press Enter to execute the command.

The above includes a file name, a shell command and a key, all presented in mono-spaced bold and all
distinguishable thanks to context.

Key combinations can be distinguished from an individual key by the plus sign that connects each part of
a key combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F2 to switch to a virtual terminal.

The first example highlights a particular key to press. The second example highlights a key combination: a
set of three keys pressed simultaneously.

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog-box text;
labeled buttons; check-box and radio-button labels; menu titles and submenu titles. For example:

1 https://fedorahosted.org/liberation-fonts/

v

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

Choose System → Preferences → Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, select the Left-handed mouse check box and click
Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications → Accessories
→ Character Map from the main menu bar. Next, choose Search → Find… from the
Character Map menu bar, type the name of the character in the Search field and click
Next. The character you sought will be highlighted in the Character Table. Double-click
this highlighted character to place it in the Text to copy field and then click the Copy
button. Now switch back to your document and choose Edit → Paste from the gedit menu
bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in proportional bold and all
distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at
a shell prompt. If the remote machine is example.com and your username on that
machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file system.
For example, to remount the /home file system, the command is mount -o remount /
home.

To see the version of a currently installed package, use the rpm -q package command.
It will return a result as follows: package-version-release.

Note the words in bold italics above: username, domain.name, file-system, package, version and release.
Each word is a placeholder, either for text you enter when issuing a command or for text displayed by the
system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

Publican is a DocBook publishing system.

1.2. Pull-quote Conventions
Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in mono-spaced roman and presented thus:

books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

vi

Notes and Warnings

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient
{
 public static void main(String args[])
 throws Exception
 {
 InitialContext iniCtx = new InitialContext();
 Object ref = iniCtx.lookup("EchoBean");
 EchoHome home = (EchoHome) ref;
 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
 }
}

1.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should have
no negative consequences, but you might miss out on a trick that makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that only apply to the
current session, or services that need restarting before an update will apply. Ignoring a box labeled
“Important” will not cause data loss but may cause irritation and frustration.

Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

2. We Need Feedback!

vii

Preface

If you find a typographical error in this manual, or if you have thought of a way to make this manual better,
we would love to hear from you! Please submit a report in Bugzilla: http://sourceware.org/bugzilla/ against
the product systemtap.

When submitting a report, be sure to include the specific file or URL the report refers to and the manual's
identifier: SystemTap_Beginners_Guide

If you have a suggestion for improving the documentation, try to be as specific as possible when
describing it. If you have found an error, please include the section number and some of the surrounding
text so we can find it easily.

viii

http://sourceware.org/bugzilla/

Chapter 1.

Introduction
SystemTap is a tracing and probing tool that allows users to study and monitor the activities of the
computer system (particularly, the kernel) in fine detail. It provides information similar to the output of tools
like netstat, ps, top, and iostat, but is designed to provide more filtering and analysis options for
collected information.

1.1. Documentation Goals

SystemTap provides the infrastructure to monitor the running Linux kernel for detailed analysis. This can
assist administrators and developers in identifying the underlying cause of a bug or performance problem.

Without SystemTap, monitoring the activity of a running kernel would require a tedious instrument,
recompile, install, and reboot sequence. SystemTap is designed to eliminate this and allows users to
gather the same information by running user-written SystemTap scripts.

SystemTap was initially designed for users with intermediate to advanced knowledge of the kernel.
As a consequence, it is less useful to administrators or developers with limited knowledge of and
experience with the Linux kernel. Moreover, much of the existing SystemTap documentation is aimed at
knowledgeable and experienced users, which makes learning the tool similarly difficult.

To lower these barriers, the SystemTap Beginners Guide was written with the following goals:

• to introduce users to SystemTap, familiarize them with its architecture, and provide setup instructions;

• to provide pre-written SystemTap scripts for monitoring detailed activity in different components of the
system, along with instructions on how to run them and analyze their output.

1.2. SystemTap Capabilities

• Flexibility: SystemTap's framework allows users to develop simple scripts for investigating and
monitoring a wide variety of kernel functions, system calls, and other events that occur in kernel space.
As a result, SystemTap is not so much a tool as it is a system that allows you to develop your own
kernel-specific forensic and monitoring tools.

• Ease of use: as mentioned earlier, SystemTap allows users to probe kernel-space events without
having to resort to instrument, recompile, install, and reboot the kernel.

Most of the SystemTap scripts enumerated in Chapter 5, Useful SystemTap Scripts demonstrate
system forensics and monitoring capabilities not natively available with other similar tools (such as top,
oprofile, or ps). These scripts are provided to give readers extensive examples of the application
of SystemTap and to educate them further on the capabilities they can employ when writing their own
SystemTap scripts.

1.3. Limitations of SystemTap

The current iteration of SystemTap allows for a multitude of options when probing kernel-space events
for a wide range of kernels. However, SystemTap's ability to probe user-space events depends on kernel

1

Chapter 1. Introduction

support (the Utrace mechanism) that is not available in many kernels. As a consequence, only some
kernel versions support user-space probing.

At present, the developmental efforts of the SystemTap community are geared towards improving
SystemTap's user-space probing capabilities.

2

Chapter 2.

Using SystemTap
This chapter documents how to install SystemTap in the system and explains how to use the stap utility
to run SystemTap scripts.

2.1. Installation and Setup

To deploy SystemTap, install the SystemTap packages along with the corresponding set of -devel, -
debuginfo, and -debuginfo-common packages for your kernel. If your system has multiple kernels installed
and you intend to use SystemTap on more than one of them, also install the -devel and -debuginfo
packages for each of those kernel versions.

The following sections discuss the installation procedures in greater detail.

Important

Many users confuse -debuginfo with -debug. Remember that the deployment of SystemTap requires
the installation of the -debuginfo package of the kernel, not the -debug version of the kernel.

2.1.1. Installing SystemTap
To deploy SystemTap, install the following RPM packages:

• systemtap

• systemtap-runtime

To do so, run the following command as root:

yum install systemtap systemtap-runtime

Note that before using SystemTap, you still need to install the required kernel information packages. On
modern systems, run the following command as root to install these packages:

stap-prep

If this command does not work, try manual installation as described below.

2.1.2. Installing Required Kernel Information Packages Manually

SystemTap needs information about the kernel in order to place instrumentation in it (in other words,
probe it). This information also allows SystemTap to generate the code for the instrumentation.

3

Chapter 2. Using SystemTap

The required information is contained in the matching -devel, -debuginfo, and -debuginfo-common
packages for your kernel. The necessary -devel and -debuginfo packages for the ordinary "vanilla" kernel
are as follows:

• kernel-debuginfo

• kernel-debuginfo-common

• kernel-devel

Likewise, the necessary packages for the PAE kernel are kernel-PAE-debuginfo, kernel-PAE-debuginfo-
common, and kernel-PAE-devel.

To determine what kernel your system is currently using, use:

uname -r

For example, if you intend to use SystemTap on kernel version 2.6.18-53.el5 on an i686 machine,
download and install the following RPM packages:

• kernel-debuginfo-2.6.18-53.1.13.el5.i686.rpm

• kernel-debuginfo-common-2.6.18-53.1.13.el5.i686.rpm

• kernel-devel-2.6.18-53.1.13.el5.i686.rpm

Important

The version, variant, and architecture of the -devel, -debuginfo and -debuginfo-common packages
must match the kernel you wish to probe with SystemTap exactly.

The easiest way to install the required kernel information packages is through yum install and
debuginfo-install commands. The debuginfo-install command is included with later versions
of the yum-utils package (for example, version 1.1.10) and also requires an appropriate yum repository
from which to download and install -debuginfo and -debuginfo-common packages. You can install the
required -devel, -debuginfo, and -debuginfo-common packages for your kernel.

When the appropriate software repositories are enabled, install the corresponding packages for a specific
kernel with the following commands:

yum install kernelname-devel-version
debuginfo-install kernelname-version

Replace kernelname with the appropriate kernel variant name (for example, kernel-PAE), and version
with the target kernel's version. For example, to install the required kernel information packages for the
kernel-PAE-2.6.18-53.1.13.el5 kernel, run:

yum install kernel-PAE-devel-2.6.18-53.1.13.el5

4

Initial Testing

debuginfo-install kernel-PAE-2.6.18-53.1.13.el5

Once you have manually downloaded the required packages to the machine, run the following command
as root to install them:

rpm --force -ivh package_names

2.1.3. Initial Testing

If you are currently using the kernel you intend to probe with SystemTap, you can immediately test
whether the deployment was successful. If not, you restart the system and load the appropriate kernel.

To start the test, run the following command:

stap -v -e 'probe vfs.read {printf("read performed\n"); exit()}'

This command instructs SystemTap to print read performed and then exit properly once a virtual
file system read is detected. If the SystemTap deployment was successful, it prints output similar to the
following:

Pass 1: parsed user script and 45 library script(s) in 340usr/0sys/358real ms.
Pass 2: analyzed script: 1 probe(s), 1 function(s), 0 embed(s), 0 global(s) in
 290usr/260sys/568real ms.
Pass 3: translated to C into "/tmp/stapiArgLX/stap_e5886fa50499994e6a87aacdc43cd392_399.c" in
 490usr/430sys/938real ms.
Pass 4: compiled C into "stap_e5886fa50499994e6a87aacdc43cd392_399.ko" in
 3310usr/430sys/3714real ms.
Pass 5: starting run.
read performed
Pass 5: run completed in 10usr/40sys/73real ms.

The last three lines of the output (beginning with Pass 5) indicate that SystemTap was able to
successfully create the instrumentation to probe the kernel, run the instrumentation, detect the event being
probed (in this case, a virtual file system read), and execute a valid handler (print text then close it with no
errors).

2.2. Generating Instrumentation for Other Computers

When users run a SystemTap script, SystemTap builds a kernel module out of that script. SystemTap then
loads the module into the kernel, allowing it to extract the specified data directly from the kernel (refer to
Procedure 3.1, “SystemTap Session” in Section 3.1, “Architecture” for more information).

Normally, however, SystemTap scripts can only be run on systems where SystemTap is deployed (as in
Section 2.1, “Installation and Setup”). This could mean that if you want to run SystemTap on ten systems,
you would need to deploy SystemTap on all those systems. In some cases, this may be neither feasible
nor desired. For instance, corporate policy may prohibit an administrator from installing RPM packages
that provide compilers or debug information on specific machines, and thus prevent the deployment of
SystemTap. To work around this problem, SystemTap allows you to use cross-instrumentation.

5

Chapter 2. Using SystemTap

Cross-instrumentation is the process of generating SystemTap instrumentation module from a SystemTap
script on one computer to be used on another computer. This process offers the following benefits:

• The kernel information packages for various machines can be installed on a single host machine.

• Each target machine only needs one RPM package to be installed in order to use the generated
SystemTap instrumentation module: the systemtap-runtime package.

For the sake of simplicity, the following terms are used throughout this section:

• Instrumentation module — the kernel module built from a SystemTap script. The SystemTap module is
built on the host system, and will be loaded on the target kernel of target system.

• Host system — the system on which you compile the instrumentation modules from SystemTap scripts
in order to load them on target systems.

• Target system — the system for which you are building the instrumentation modules from SystemTap
scripts.

• Target kernel — the kernel of the target system. This is the kernel on which you intend to load or run
the instrumentation module.

To configure a host system and target systems, complete the following steps:

1. Install the systemtap-runtime package on each target system.

2. Determine the kernel running on each target system by running the uname -r command on each of
these systems.

3. Install SystemTap on the host system. You will be building the instrumentation module for the target
systems on the host system. For instructions on how to install SystemTap, refer to Section 2.1.1,
“Installing SystemTap”.

4. Using the target kernel version determined earlier, install the target kernel and related RPM packages
on the host system as described in Section 2.1.2, “Installing Required Kernel Information Packages
Manually”. If multiple target systems use different target kernels, repeat this step for each different
kernel used on the target systems.

After completing these steps, you can now build the instrumentation module (for any target system) on the
host system.

To build the instrumentation module, run the following command on the host system (be sure to specify
the appropriate values):

stap -p4 -r kernel_version script -m module_name

Here, kernel_version refers to the version of the target kernel (the output of the uname -r command
on the target machine), script refers to the script to be converted into the instrumentation module, and
module_name is the desired name of the instrumentation module.

6

Running SystemTap Scripts

Note

To determine the architecture notation of a running kernel, you can run the following command:

uname -m

Once the instrumentation module is compiled, copy it to the target system and then load it using:

staprun module_name.ko

For example, to create the instrumentation module simple.ko from a SystemTap script named
simple.stp for the target kernel 2.6.18-92.1.10.el5 (on x86_64 architecture), use the following
command:

stap -r 2.6.18-92.1.10.el5 -e 'probe vfs.read {exit()}' -m simple

This creates a module named simple.ko. To use this instrumentation module, copy it to the target
system and run the following command (on the target system):

staprun simple.ko

Important

The host system must be the same architecture and running the same distribution of Linux as the
target system in order for the built instrumentation module to work.

2.3. Running SystemTap Scripts

SystemTap is distributed with a number of command line tools that allow you to monitor the activities of
the system. The stap command reads probing instructions from a SystemTap script, translates these
instructions into C code, builds a kernel module, and loads it into the running Linux kernel. The staprun
command runs SystemTap instrumentation, that is, a kernel module built from SystemTap scripts during a
cross-instrumentation.

Running stap and staprun requires elevated privileges to the system. Because not all users can
be granted root access just to run SystemTap, you can allow a non-privileged user to run SystemTap
instrumentation on their machine by adding them to one of the following user groups:

stapdev

7

Chapter 2. Using SystemTap

Members of this group can use the stap command to run SystemTap scripts, or staprun to run
SystemTap instrumentation modules.

Running the stap command involves compiling SystemTap scripts into kernel modules and loading
them into the kernel. This operation requires elevated privileges to the system, which are granted
to stapdev members. Unfortunately, such privileges also grant effective root access to stapdev
members. As a consequence, only grant stapdev group membership to users whom you can trust
with root access.

stapusr

Members of this group can only use the staprun command to run SystemTap instrumentation
modules. In addition, they can only run modules from the /lib/modules/kernel_version/
systemtap/ directory. Note that this directory must be owned only by the root user, and must only
be writable by the root user.

The stap command reads a SystemTap script either from a file, or from standard input. To tell stap to
read a SystemTap script from a file, specify the file name on the command line:

stap file_name

To instruct stap to read a SystemTap script from standard input, use the - switch instead of the file
name. Note that any command-line options you wish to use must be inserted before the - switch. For
example, to make the output of the stap command more verbose, type:

echo "probe timer.s(1) {exit()}" | stap -v -

Below is a list of commonly used stap options:

-v
Makes the output of the SystemTap session more verbose. You can repeat this option multiple times
to provide more details on the script's execution, for example:

stap -vvv script.stp

This option is particularly useful if you encounter any errors in running the script. For more information
about common SystemTap script errors, refer to Chapter 6, Understanding SystemTap Errors.

-o file_name
Sends the standard output to a file named file_name.

-S size,count
Limits the maximum size of output files to size megabytes and the maximum number of stored files to
count. This option implements logrotate operations for SystemTap and the resulting file names have a
sequence number suffix.

-x process_id
Sets the SystemTap handler function target() to the specified process ID. For more information
about target(), refer to SystemTap Functions.

8

SystemTap Flight Recorder Mode

-c 'command'
Sets the SystemTap handler function target() to the specified command and runs the SystemTap
instrumentation for the duration of this command. For more information about target(), refer to
SystemTap Functions.

-e 'script'
Uses script rather than a file as input for the SystemTap translator.

-F
Uses SystemTap's flight recorder mode and makes the script a background process. For more
information about flight recorder mode, refer to Section 2.3.1, “SystemTap Flight Recorder Mode”.

For more information about the stap command, refer to the stap(1) man page. For more information
about the staprun command and cross-instrumentation, refer to Section 2.2, “Generating
Instrumentation for Other Computers” or the staprun(8) man page.

2.3.1. SystemTap Flight Recorder Mode

SystemTap's flight recorder mode allows you to run a SystemTap script for long periods of time and just
focus on recent output. The flight recorder mode limits the amount of output generated.

There are two variations of the flight recorder mode: in-memory and file mode. In both cases, the
SystemTap script runs as a background process.

2.3.1.1. In-memory Flight Recorder

When flight recorder mode is used without a file name, SystemTap uses a buffer in kernel memory to
store the output of the script. Once the SystemTap instrumentation module is loaded and the probes start
running, the instrumentation detaches and is put in the background. When the interesting event occurs,
you can reattach to the instrumentation to see the recent output in the memory buffer and any continuing
output.

To run a SystemTap script by using the flight recorder in-memory mode, run the stap command with the
-F command line option:

stap -F iotime.stp

Once the script starts, stap prints a message similar to the following to provide you with the command to
reconnect to the running script:

Disconnecting from systemtap module.
To reconnect, type "staprun -A stap_5dd0073edcb1f13f7565d8c343063e68_19556"

When the interesting event occurs, run the following command to connect to the currently running script,
output the recent data in the memory buffer, and get continuing output:

staprun -A stap_5dd0073edcb1f13f7565d8c343063e68_19556

9

Chapter 2. Using SystemTap

By default, the kernel buffer is 1MB in size. You can increase this value by using the -s option with
the size in megabytes (rounded up to the next power over 2) for the buffer. For example, -s2 on the
SystemTap command line would specify 2MB for the buffer.

2.3.1.2. File Flight Recorder

The flight recorder mode can also store data to files. You can control the number and size of the files kept
by using the -S option followed by two numerical arguments separated by a comma: the first argument is
the maximum size in megabytes for the each output file, the second argument is the number of recent files
to keep. To specify the file name, use the -o option followed by the name. SystemTap automatically adds
a number suffix to the file name to indicate the order of the files.

The following command starts SystemTap in file flight recorder mode with the output going to files named
/tmp/pfaults.log.[0-9]+, each file 1MB or smaller, and keeping latest two files:

stap -F -o /tmp/pfaults.log -S 1,2 pfaults.stp

The command prints the process ID to standard output. Sending a SIGTERM to the process terminates
the SystemTap script and stops the data collection. For example, if the previous command listed 7590 as
the process ID, the following command would stop the SystemTap script:

kill -s SIGTERM 7590

In this example, only the most recent two files generated by the script are kept: SystemTap automatically
removes older files. As a result, the ls -sh /tmp/pfaults.log.* command lists two files:

1020K /tmp/pfaults.log.5 44K /tmp/pfaults.log.6

To examine the latest data, read the file with the highest number, in this case /tmp/pfaults.log.6.

10

Chapter 3.

Understanding How SystemTap Works
SystemTap allows users to write and reuse simple scripts to deeply examine the activities of a running
Linux system. These scripts can be designed to extract data, filter it, and summarize it quickly (and
safely), enabling the diagnosis of complex performance (or even functional) problems.

The essential idea behind a SystemTap script is to name events, and to give them handlers. When
SystemTap runs the script, SystemTap monitors for the event; once the event occurs, the Linux kernel
then runs the handler as a quick sub-routine, then resumes.

There are several kind of events; entering/exiting a function, timer expiration, session termination, etc.
A handler is a series of script language statements that specify the work to be done whenever the event
occurs. This work normally includes extracting data from the event context, storing them into internal
variables, and printing results.

3.1. Architecture

A SystemTap session begins when you run a SystemTap script. This session occurs in the following
fashion:

Procedure 3.1. SystemTap Session

1. First, SystemTap checks the script against the existing tapset library (normally in /usr/share/
systemtap/tapset/ for any tapsets used. SystemTap will then substitute any located tapsets with
their corresponding definitions in the tapset library.

2. SystemTap then translates the script to C, running the system C compiler to create a kernel
module from it. The tools that perform this step are contained in the systemtap package (refer to
Section 2.1.1, “Installing SystemTap” for more information).

3. SystemTap loads the module, then enables all the probes (events and handlers) in the script. The
staprun in the systemtap-runtime package (refer to Section 2.1.1, “Installing SystemTap” for
more information) provides this functionality.

4. As the events occur, their corresponding handlers are executed.

5. Once the SystemTap session is terminated, the probes are disabled, and the kernel module is
unloaded.

This sequence is driven from a single command-line program: stap. This program is SystemTap's main
front-end tool. For more information about stap, refer to man stap (once SystemTap is properly installed
on your machine).

3.2. SystemTap Scripts

For the most part, SystemTap scripts are the foundation of each SystemTap session. SystemTap
scripts instruct SystemTap on what type of information to collect, and what to do once that information is
collected.

11

Chapter 3. Understanding How SystemTap Works

As stated in Chapter 3, Understanding How SystemTap Works, SystemTap scripts are made up of two
components: events and handlers. Once a SystemTap session is underway, SystemTap monitors the
operating system for the specified events and executes the handlers as they occur.

Note

An event and its corresponding handler is collectively called a probe. A SystemTap script can have
multiple probes.

A probe's handler is commonly referred to as a probe body.

In terms of application development, using events and handlers is similar to instrumenting the code by
inserting diagnostic print statements in a program's sequence of commands. These diagnostic print
statements allow you to view a history of commands executed once the program is run.

SystemTap scripts allow insertion of the instrumentation code without recompilation of the code and
allows more flexibility with regard to handlers. Events serve as the triggers for handlers to run; handlers
can be specified to record specified data and print it in a certain manner.

Format

SystemTap scripts use the file extension .stp, and contains probes written in the following format:

probe event {statements}

SystemTap supports multiple events per probe; multiple events are delimited by a comma (,). If multiple
events are specified in a single probe, SystemTap will execute the handler when any of the specified
events occur.

Each probe has a corresponding statement block. This statement block is enclosed in braces ({ }) and
contains the statements to be executed per event. SystemTap executes these statements in sequence;
special separators or terminators are generally not necessary between multiple statements.

Note

Statement blocks in SystemTap scripts follow the same syntax and semantics as the C programming
language. A statement block can be nested within another statement block.

12

Event

SystemTap allows you to write functions to factor out code to be used by a number of probes. Thus,
rather than repeatedly writing the same series of statements in multiple probes, you can just place the
instructions in a function, as in:

function function_name(arguments) {statements}
probe event {function_name(arguments)}

The statements in function_name are executed when the probe for event executes. The arguments are
optional values passed into the function.

Important

Section 3.2, “SystemTap Scripts” is designed to introduce readers to the basics of SystemTap
scripts. To understand SystemTap scripts better, it is advisable that you refer to Chapter 5, Useful
SystemTap Scripts; each section therein provides a detailed explanation of the script, its events,
handlers, and expected output.

3.2.1. Event

SystemTap events can be broadly classified into two types: synchronous and asynchronous.

Synchronous Events

A synchronous event occurs when any process executes an instruction at a particular location in kernel
code. This gives other events a reference point from which more contextual data may be available.

Examples of synchronous events include:

syscall.system_call

The entry to the system call system_call. If the exit from a syscall is desired, appending a .return to
the event monitor the exit of the system call instead. For example, to specify the entry and exit of the
system call close, use syscall.close and syscall.close.return respectively.

vfs.file_operation

The entry to the file_operation event for Virtual File System (VFS). Similar to syscall event,
appending a .return to the event monitors the exit of the file_operation operation.

kernel.function("function")

The entry to the kernel function function. For example, kernel.function("sys_open") refers to
the "event" that occurs when the kernel function sys_open is called by any thread in the system. To
specify the return of the kernel function sys_open, append the return string to the event statement;
that is, kernel.function("sys_open").return.

13

Chapter 3. Understanding How SystemTap Works

When defining probe events, you can use asterisk (*) for wildcards. You can also trace the entry or
exit of a function in a kernel source file. Consider the following example:

Example 3.1. wildcards.stp

probe kernel.function("*@net/socket.c") { }
probe kernel.function("*@net/socket.c").return { }

In the previous example, the first probe's event specifies the entry of ALL functions in the kernel
source file net/socket.c. The second probe specifies the exit of all those functions. Note that in
this example, there are no statements in the handler; as such, no information will be collected or
displayed.

kernel.trace("tracepoint")

The static probe for tracepoint. Recent kernels (2.6.30 and newer) include instrumentation for specific
events in the kernel. These events are statically marked with tracepoints. One example of a tracepoint
available in systemtap is kernel.trace("kfree_skb") which indicates each time a network
buffer is freed in the kernel.

module("module").function("function")

Allows you to probe functions within modules. For example:

Example 3.2. moduleprobe.stp

probe module("ext3").function("*") { }
probe module("ext3").function("*").return { }

The first probe in Example 3.2, “moduleprobe.stp” points to the entry of all functions for the ext3
module. The second probe points to the exits of all functions for that same module; the use of
the .return suffix is similar to kernel.function(). Note that the probes in Example 3.2,
“moduleprobe.stp” do not contain statements in the probe handlers, and as such will not print any
useful data (as in Example 3.1, “wildcards.stp”).

A system's kernel modules are typically located in /lib/modules/kernel_version, where
kernel_version refers to the currently loaded kernel version. Modules use the file name extension .ko.

Asynchronous Events

Asynchronous events are not tied to a particular instruction or location in code. This family of probe points
consists mainly of counters, timers, and similar constructs.

Examples of asynchronous events include:

begin

14

SystemTap Handler/Body

The startup of a SystemTap session; that is, as soon as the SystemTap script is run.

end

The end of a SystemTap session.

timer events

An event that specifies a handler to be executed periodically. For example:

Example 3.3. timer-s.stp

probe timer.s(4)
{
 printf("hello world\n")
}

Example 3.3, “timer-s.stp” is an example of a probe that prints hello world every 4 seconds. It is
also possible to use the following timer events:

• timer.ms(milliseconds)

• timer.us(microseconds)

• timer.ns(nanoseconds)

• timer.hz(hertz)

• timer.jiffies(jiffies)

When used in conjunction with other probes that collect information, timer events allows you to print
out get periodic updates and see how that information changes over time.

Important

SystemTap supports the use of a large collection of probe events. For more information about
supported events, refer to man stapprobes. The SEE ALSO section of man stapprobes also
contains links to other man pages that discuss supported events for specific subsystems and
components.

3.2.2. SystemTap Handler/Body

Consider the following sample script:

Example 3.4. helloworld.stp

probe begin
{

15

Chapter 3. Understanding How SystemTap Works

 printf ("hello world\n")
 exit ()
}

In Example 3.4, “helloworld.stp”, the event begin (that is, the start of the session) triggers the handler
enclosed in { }, which simply prints hello world followed by a new-line, then exits.

Note

SystemTap scripts continue to run until the exit() function executes. If the users wants to stop the
execution of the script, it can interrupted manually with Ctrl+C.

printf () Statements

The printf () statement is one of the simplest functions for printing data. printf () can also be
used to display data using a wide variety of SystemTap functions in the following format:

 printf ("format string\n", arguments)

The format string specifies how arguments should be printed. The format string of Example 3.4,
“helloworld.stp” instructs SystemTap to print hello world, and contains no format specifiers.

You can use the format specifiers %s (for strings) and %d (for numbers) in format strings, depending on
your list of arguments. Format strings can have multiple format specifiers, each matching a corresponding
argument; multiple arguments are delimited by a comma (,).

Note

Semantically, the SystemTap printf function is very similar to its C language counterpart. The
aforementioned syntax and format for SystemTap's printf function is identical to that of the C-style
printf.

To illustrate this, consider the following probe example:

Example 3.5. variables-in-printf-statements.stp

probe syscall.open
{
 printf ("%s(%d) open\n", execname(), pid())

16

SystemTap Handler/Body

}

Example 3.5, “variables-in-printf-statements.stp” instructs SystemTap to probe all entries to the system
call open; for each event, it prints the current execname() (a string with the executable name) and
pid() (the current process ID number), followed by the word open. A snippet of this probe's output would
look like:

vmware-guestd(2206) open
hald(2360) open
hald(2360) open
hald(2360) open
df(3433) open
df(3433) open
df(3433) open
hald(2360) open

SystemTap Functions

SystemTap supports a wide variety of functions that can be used as printf () arguments.
Example 3.5, “variables-in-printf-statements.stp” uses the SystemTap functions execname() (name of
the process that called a kernel function/performed a system call) and pid() (current process ID).

The following is a list of commonly-used SystemTap functions:

tid()

The ID of the current thread.

uid()

The ID of the current user.

cpu()

The current CPU number.

gettimeofday_s()

The number of seconds since UNIX epoch (January 1, 1970).

ctime()

Convert number of seconds since UNIX epoch to date.

pp()

A string describing the probe point currently being handled.

thread_indent()

17

Chapter 3. Understanding How SystemTap Works

This particular function is quite useful in providing you with a way to better organize your print results.
The function takes one argument, an indentation delta, which indicates how many spaces to add or
remove from a thread's "indentation counter". It then returns a string with some generic trace data
along with an appropriate number of indentation spaces.

The generic data included in the returned string includes a timestamp (number of microseconds since
the first call to thread_indent() by the thread), a process name, and the thread ID. This allows
you to identify what functions were called, who called them, and the duration of each function call.

If call entries and exits immediately precede each other, it is easy to match them. However, in most
cases, after a first function call entry is made several other call entries and exits may be made before
the first call exits. The indentation counter helps you match an entry with its corresponding exit by
indenting the next function call if it is not the exit of the previous one.

Consider the following example on the use of thread_indent():

Example 3.6. thread_indent.stp

probe kernel.function("*@net/socket.c").call
{
 printf ("%s -> %s\n", thread_indent(1), probefunc())
}
probe kernel.function("*@net/socket.c").return
{
 printf ("%s <- %s\n", thread_indent(-1), probefunc())
}

Example 3.6, “thread_indent.stp” prints out the thread_indent() and probe functions at each event
in the following format:

0 ftp(7223): -> sys_socketcall
1159 ftp(7223): -> sys_socket
2173 ftp(7223): -> __sock_create
2286 ftp(7223): -> sock_alloc_inode
2737 ftp(7223): <- sock_alloc_inode
3349 ftp(7223): -> sock_alloc
3389 ftp(7223): <- sock_alloc
3417 ftp(7223): <- __sock_create
4117 ftp(7223): -> sock_create
4160 ftp(7223): <- sock_create
4301 ftp(7223): -> sock_map_fd
4644 ftp(7223): -> sock_map_file
4699 ftp(7223): <- sock_map_file
4715 ftp(7223): <- sock_map_fd
4732 ftp(7223): <- sys_socket
4775 ftp(7223): <- sys_socketcall

This sample output contains the following information:

• The time (in microseconds) since the initial thread_indent() call for the thread (included in the
string from thread_indent()).

• The process name (and its corresponding ID) that made the function call (included in the string from
thread_indent()).

18

Basic SystemTap Handler Constructs

• An arrow signifying whether the call was an entry (<-) or an exit (->); the indentations help you
match specific function call entries with their corresponding exits.

• The name of the function called by the process.

name

Identifies the name of a specific system call. This variable can only be used in probes that use the
event syscall.system_call.

target()

Used in conjunction with stap script -x process ID or stap script -c command. If you
want to specify a script to take an argument of a process ID or command, use target() as the
variable in the script to refer to it. For example:

Example 3.7. targetexample.stp

probe syscall.* {
 if (pid() == target())
 printf("%s\n", name)
}

When Example 3.7, “targetexample.stp” is run with the argument -x process ID, it watches all
system calls (as specified by the event syscall.*) and prints out the name of all system calls made
by the specified process.

This has the same effect as specifying if (pid() == process ID) each time you wish to target
a specific process. However, using target() makes it easier for you to re-use the script, giving you
the ability to pass a process ID as an argument each time you wish to run the script (that is, stap
targetexample.stp -x process ID).

For more information about supported SystemTap functions, refer to man stapfuncs.

3.3. Basic SystemTap Handler Constructs

SystemTap supports the use of several basic constructs in handlers. The syntax for most of these handler
constructs are mostly based on C and awk syntax. This section describes several of the most useful
SystemTap handler constructs, which should provide you with enough information to write simple yet
useful SystemTap scripts.

3.3.1. Variables

Variables can be used freely throughout a handler; simply choose a name, assign a value from a function
or expression to it, and use it in an expression. SystemTap automatically identifies whether a variable
should be typed as a string or integer, based on the type of the values assigned to it. For instance, if you
use set the variable foo to gettimeofday_s() (as in foo = gettimeofday_s()), then foo is typed
as a number and can be printed in a printf() with the integer format specifier (%d).

19

Chapter 3. Understanding How SystemTap Works

Note, however, that by default variables are only local to the probe they are used in. This means that
variables are initialized, used and disposed at each probe handler invocation. To share a variable between
probes, declare the variable name using global outside of the probes. Consider the following example:

Example 3.8. timer-jiffies.stp

global count_jiffies, count_ms
probe timer.jiffies(100) { count_jiffies ++ }
probe timer.ms(100) { count_ms ++ }
probe timer.ms(12345)
{
 hz=(1000*count_jiffies) / count_ms
 printf ("jiffies:ms ratio %d:%d => CONFIG_HZ=%d\n",
 count_jiffies, count_ms, hz)
 exit ()
}

Example 3.8, “timer-jiffies.stp” computes the CONFIG_HZ setting of the kernel using timers that count
jiffies and milliseconds, then computing accordingly. The global statement allows the script to use the
variables count_jiffies and count_ms (set in their own respective probes) to be shared with probe
timer.ms(12345).

Note

The ++ notation in Example 3.8, “timer-jiffies.stp” (that is, count_jiffies ++ and count_ms
++) is used to increment the value of a variable by 1. In the following probe, count_jiffies is
incremented by 1 every 100 jiffies:

probe timer.jiffies(100) { count_jiffies ++ }

In this instance, SystemTap understands that count_jiffies is an integer. Because no initial
value was assigned to count_jiffies, its initial value is zero by default.

3.3.2. Target Variables

The probe events that map to actual locations in the code (for example
kernel.function("function") and kernel.statement("statement")) allow the use of target
variables to obtain the value of variables visible at that location in the code. You can use the -L option to
list the target variable available at a probe point. If the debug information is installed for the running kernel,
you can run the following command to find out what target variables are available for the vfs_read
function:

stap -L 'kernel.function("vfs_read")'

This will yield something similar to the following:

20

Target Variables

kernel.function("vfs_read@fs/read_write.c:277") $file:struct file* $buf:char* $count:size_t
 $pos:loff_t*

Each target variable is proceeded by a “$” and the type of the target variable follows the “:”. The kernel's
vfs_read function has $file (pointer to structure describing the file), $buf (pointer to the user-space
memory to store the read data), $count (number of bytes to read), and $pos (position to start reading
from in the file) target variables at the entry to the function.

When a target variable is not local to the probe point, like a global external variable or a file local static
variable defined in another file then it can be referenced through “@var("varname@src/file.c")”.

SystemTap tracks the typing information of the target variable and can examine the fields of a structure
with the -> operator. The -> operator can be chained to look at data structures contained within data
structures and follow pointers to other data structures. The -> operator will obtain the value in the field of
the structure. The -> operator is used regardless whether accessing a field in a substructure or accessing
another structure through a pointer.

For example to access a field of the static files_stat target variable defined in fs/file_table.c (which holds
some of the current file system sysctl tunables), one could write:

stap -e 'probe kernel.function("vfs_read") {
 printf ("current files_stat max_files: %d\n",
 @var("files_stat@fs/file_table.c")->max_files);
 exit(); }'

Which will yield something similar to the following:

current files_stat max_files: 386070

For pointers to base types such as integers and strings there are a number of functions listed below to
access kernel-space data. The first argument for each functions is the pointer to the data item. Similar
functions are described in Section 4.2, “Accessing User-Space Target Variables” for accessing target
variables in user-space code.

kernel_char(address)
Obtain the character at address from kernel memory.

kernel_short(address)
Obtain the short at address from kernel memory.

kernel_int(address)
Obtain the int at address from kernel memory.

kernel_long(address)
Obtain the long at address from kernel memory

kernel_string(address)
Obtain the string at address from kernel memory.

kernel_string_n(address, n)
Obtain the string at address from the kernel memory and limits the string to n bytes.

21

Chapter 3. Understanding How SystemTap Works

3.3.2.1. Pretty Printing Target Variables

SystemTap scripts are often used to observe what is happening within the code. In many cases just
printing the values of the various context variables is sufficient. SystemTap makes a number operations
available that can generate printable strings for target variables:

$$vars
Expands to a character string that is equivalent to sprintf("parm1=%x ... parmN=%x var1=
%x ... varN=%x", parm1, ..., parmN, var1, ..., varN) for each variable in scope at
the probe point. Some values may be printed as “=?” if their run-time location cannot be found.

$$locals
Expands to a subset of $$vars containing only the local variables.

$$parms
Expands to a subset of $$vars containing only the function parameters.

$$return
Is available in return probes only. It expands to a string that is equivalent to sprintf("return=
%x", $return) if the probed function has a return value, or else an empty string.

Below is a command-line script that prints the values of the parameters passed into the function
vfs_read:

stap -e 'probe kernel.function("vfs_read") {printf("%s\n", $$parms); exit(); }'

There are four parameters passed into vfs_read: file, buf, count, and pos. The $$parms generates
a string for the parameters passed into the function. In this case all but the count parameter are pointers.
The following is an example of the output from the previous command-line script:

file=0xffff8800b40d4c80 buf=0x7fff634403e0 count=0x2004 pos=0xffff8800af96df48

Having the address a pointer points to may not be useful. Instead the fields of the data structure the
pointer points to may be of more use. Use the “$” suffix to pretty print the data structure. The following
command-line example uses the pretty printing suffix to print more details about the data structures
passed into the function vfs_read:

stap -e 'probe kernel.function("vfs_read") {printf("%s\n", $$parms$); exit(); }'

The previous command line will generate something similar to the following with the fields of the data
structure included in the output:

file={.f_u={...}, .f_path={...}, .f_op=0xffffffffa06e1d80, .f_lock={...}, .f_count={...}, .f_flags=34818, .f_mode=31, .f_pos=0, .f_owner={...}, .f_cred=0xffff88013148fc80, .f_ra={...}, .f_version=0, .f_security=0xffff8800b8dce560, .private_data=0x0, .f_ep_links={...}, .f_mapping=0xffff880037f8fdf8}
 buf="" count=8196 pos=-131938753921208

With the “$” suffix fields that are composed of data structures are not expanded. The “$$” suffix will print
the values contained within the nested data structures. Below is an example using the “$$” suffix:

stap -e 'probe kernel.function("vfs_read") {printf("%s\n", $$parms$$); exit(); }'

22

Target Variables

The “$$” suffix, like all strings, is limited to the maximum string size. Below is a representative output from
the previous command-line script, which is truncated because of the string size limit:

file={.f_u={.fu_list={.next=0xffff8801336ca0e8, .prev=0xffff88012ded0840}, .fu_rcuhead={.next=0xffff8801336ca0e8, .func=0xffff88012ded0840}}, .f_path={.mnt=0xffff880132fc97c0, .dentry=0xffff88001a889cc0}, .f_op=0xffffffffa06f64c0, .f_lock={.raw_lock={.slock=196611}}, .f_count={.counter=2}, .f_flags=34818, .f_mode=31, .f_pos=0, .f_owner={.lock={.raw_lock={.lock=16777216}}, .pid=0x0, .pid_type=0, .uid=0, .euid=0, .signum=0}, .f_cred=0xffff880130129a80, .f_ra={.start=0, .size=0, .async_size=0, .ra_pages=32, .

3.3.2.2. Typecasting

In most cases SystemTap can determine a variable's type from the debug information. However, code
may use void pointers for variables (for example memory allocation routines) and typing information is not
available. Also the typing information available within a probe handler is not available within a function;
SystemTap functions arguments use a long in place of a typed pointer. SystemTap's @cast operator (first
available in SystemTap 0.9) can be used to indicate the correct type of the object.

The Example 3.9, “Casting Example” is from the task.stp tapset. The function returns the value of the
state field from a task_struct pointed to by the long task. The first argument of the @cast operator,
task, is the pointer to the object. The second argument is the type to cast the object to, task_struct.
The third argument lists what file that the type definition information comes from and is optional. With the
@cast operator the various fields of this particular task_struct task can be accessed; in this example
the state field is obtained.

Example 3.9. Casting Example

function task_state:long (task:long)
{
 return @cast(task, "task_struct", "kernel<linux/sched.h>")->state
}

3.3.2.3. Checking Target Variable Availability

As code evolves the target variables available may change. The @defined makes it easier to handle
those variations in the available target variables. The @defined provides a test to see if a particular
target variable is available. The result of this test can be used to select the appropriate expression.

The Example 3.10, “Testing target variable available Example” from the memory.stp tapset provides an
probe event alias. Some version of the kernel functions being probed have an argument $flags. When
available, the $flags argument is used to generate the local variable write_access. The versions of
the probed functions that do not have the $flags argument have a $write argument and that is used
instead for the local variable write_access.

Example 3.10. Testing target variable available Example

probe vm.pagefault = kernel.function("__handle_mm_fault@mm/memory.c") ?,
 kernel.function("handle_mm_fault@mm/memory.c") ?
{
 name = "pagefault"
 write_access = (@defined($flags)
 ? $flags & FAULT_FLAG_WRITE : $write_access)
 address = $address
}

23

Chapter 3. Understanding How SystemTap Works

3.3.3. Conditional Statements

In some cases, the output of a SystemTap script may be too large. To address this, you need to further
refine the script's logic in order to delimit the output into something more relevant or useful to your probe.

Do this by using conditionals in handlers. SystemTap accepts the following types of conditional
statements:

If/Else Statements

Format:

if (condition)
 statement1
else
 statement2

The statement1 is executed if the condition expression is non-zero. The statement2 is
executed if the condition expression is zero. The else clause (else statement2) is optional. Both
statement1 and statement2 can be statement blocks.

Example 3.11. ifelse.stp

global countread, countnonread
probe kernel.function("vfs_read"),kernel.function("vfs_write")
{
 if (probefunc()=="vfs_read")
 countread ++
 else
 countnonread ++
}
probe timer.s(5) { exit() }
probe end
{
 printf("VFS reads total %d\n VFS writes total %d\n", countread, countnonread)
}

Example 3.11, “ifelse.stp” is a script that counts how many virtual file system reads (vfs_read)
and writes (vfs_write) the system performs within a 5-second span. When run, the script
increments the value of the variable countread by 1 if the name of the function it probed matches
vfs_read (as noted by the condition if (probefunc()=="vfs_read")); otherwise, it increments
countnonread (else {countnonread ++}).

While Loops

Format:

while (condition)
 statement

24

Command-Line Arguments

So long as condition is non-zero the block of statements in statement are executed. The
statement is often a statement block and it must change a value so condition will eventually be
zero.

For Loops

Format:

for (initialization; conditional; increment) statement

The for loop is shorthand for a while loop. The following is the equivalent while loop:

initialization
while (conditional) {
 statement
 increment
}

Conditional Operators

Aside from == ("is equal to"), following operators can also be used in conditional statements:

>=
Greater than or equal to

<=
Less than or equal to

!=
Is not equal to

3.3.4. Command-Line Arguments

A SystemTap script can also accept simple command-line arguments using a $ or @ immediately followed
by the number of the argument on the command line. Use $ if you are expecting the user to enter an
integer as a command-line argument, and @ if you are expecting a string.

Example 3.12. commandlineargs.stp

probe kernel.function(@1) { }
probe kernel.function(@1).return { }

Example 3.12, “commandlineargs.stp” is similar to Example 3.1, “wildcards.stp”, except that it
allows you to pass the kernel function to be probed as a command-line argument (as in stap
commandlineargs.stp kernel function). You can also specify the script to accept multiple
command-line arguments, noting them as @1, @2, and so on, in the order they are entered by the user.

25

Chapter 3. Understanding How SystemTap Works

3.4. Associative Arrays

SystemTap also supports the use of associative arrays. While an ordinary variable represents a single
value, associative arrays can represent a collection of values. Simply put, an associative array is a
collection of unique keys; each key in the array has a value associated with it.

Since associative arrays are normally processed in multiple probes (as we will demonstrate later), they
should be declared as global variables in the SystemTap script. The syntax for accessing an element in
an associative array is similar to that of awk, and is as follows:

array_name[index_expression]

Here, the array_name is any arbitrary name the array uses. The index_expression is used to refer
to a specific unique key in the array. To illustrate, let us try to build an array named foo that specifies
the ages of three people tom, dick, and harry (which are unique keys). To assign them the ages
(associated values) of 23, 24, and 25 respectively, we'd use the following array statements:

Example 3.13. Basic Array Statements

foo["tom"] = 23
foo["dick"] = 24
foo["harry"] = 25

You can specify up to nine index expressions in an array statement, each one delimited by a comma (,).
This is useful if you wish to have a key that contains multiple pieces of information. The following line from
disktop.stp uses 5 elements for the key: process ID, executable name, user ID, parent process ID, and
string "W". It associates the value of devname with that key.

device[pid(),execname(),uid(),ppid(),"W"] = devname

Important

All associate arrays must be declared as global, regardless of whether the associate array is used
in one or multiple probes.

3.5. Array Operations in SystemTap

This section enumerates some of the most commonly used array operations in SystemTap.

26

Assigning an Associated Value

3.5.1. Assigning an Associated Value

Use = to set an associated value to indexed unique pairs, as in:

array_name[index_expression] = value

Example 3.13, “Basic Array Statements” shows a very basic example of how to set an explicit associated
value to a unique key. You can also use a handler function as both your index_expression and
value. For example, you can use arrays to set a timestamp as the associated value to a process name
(which you wish to use as your unique key), as in:

Example 3.14. Associating Timestamps to Process Names

foo[tid()] = gettimeofday_s()

Whenever an event invokes the statement in Example 3.14, “Associating Timestamps to Process Names”,
SystemTap returns the appropriate tid() value (that is, the ID of a thread, which is then used as
the unique key). At the same time, SystemTap also uses the function gettimeofday_s() to set the
corresponding timestamp as the associated value to the unique key defined by the function tid(). This
creates an array composed of key pairs containing thread IDs and timestamps.

In this same example, if tid() returns a value that is already defined in the array foo, the operator
will discard the original associated value to it, and replace it with the current timestamp from
gettimeofday_s().

3.5.2. Reading Values From Arrays

You can also read values from an array the same way you would read the value of a variable. To do so,
include the array_name[index_expression] statement as an element in a mathematical expression.
For example:

Example 3.15. Using Array Values in Simple Computations

delta = gettimeofday_s() - foo[tid()]

This example assumes that the array foo was built using the construct in Example 3.14, “Associating
Timestamps to Process Names” (from Section 3.5.1, “Assigning an Associated Value”). This sets a
timestamp that will serve as a reference point, to be used in computing for delta.

The construct in Example 3.15, “Using Array Values in Simple Computations” computes a value
for the variable delta by subtracting the associated value of the key tid() from the current
gettimeofday_s(). The construct does this by reading the value of tid() from the array. This

27

Chapter 3. Understanding How SystemTap Works

particular construct is useful for determining the time between two events, such as the start and
completion of a read operation.

Note

If the index_expression cannot find the unique key, it returns a value of 0 (for numerical
operations, such as Example 3.15, “Using Array Values in Simple Computations”) or a null/empty
string value (for string operations) by default.

3.5.3. Incrementing Associated Values

Use ++ to increment the associated value of a unique key in an array, as in:

array_name[index_expression] ++

Again, you can also use a handler function for your index_expression. For example, if you wanted
to tally how many times a specific process performed a read to the virtual file system (using the event
vfs.read), you can use the following probe:

Example 3.16. vfsreads.stp

probe vfs.read
{
 reads[execname()] ++
}

In Example 3.16, “vfsreads.stp”, the first time that the probe returns the process name gnome-terminal
(that is, the first time gnome-terminal performs a VFS read), that process name is set as the unique
key gnome-terminal with an associated value of 1. The next time that the probe returns the process
name gnome-terminal, SystemTap increments the associated value of gnome-terminal by 1.
SystemTap performs this operation for all process names as the probe returns them.

3.5.4. Processing Multiple Elements in an Array

Once you've collected enough information in an array, you will need to retrieve and process all elements
in that array to make it useful. Consider Example 3.16, “vfsreads.stp”: the script collects information about
how many VFS reads each process performs, but does not specify what to do with it. The obvious means
for making Example 3.16, “vfsreads.stp” useful is to print the key pairs in the array reads, but how?

The best way to process all key pairs in an array (as an iteration) is to use the foreach statement.
Consider the following example:

28

Clearing/Deleting Arrays and Array Elements

Example 3.17. cumulative-vfsreads.stp

global reads
probe vfs.read
{
 reads[execname()] ++
}
probe timer.s(3)
{
 foreach (count in reads)
 printf("%s : %d \n", count, reads[count])
}

In the second probe of Example 3.17, “cumulative-vfsreads.stp”, the foreach statement uses the
variable count to reference each iteration of a unique key in the array reads. The reads[count] array
statement in the same probe retrieves the associated value of each unique key.

Given what we know about the first probe in Example 3.17, “cumulative-vfsreads.stp”, the script prints
VFS-read statistics every 3 seconds, displaying names of processes that performed a VFS-read along
with a corresponding VFS-read count.

Now, remember that the foreach statement in Example 3.17, “cumulative-vfsreads.stp” prints all
iterations of process names in the array, and in no particular order. You can instruct the script to process
the iterations in a particular order by using + (ascending) or - (descending). In addition, you can also limit
the number of iterations the script needs to process with the limit value option.

For example, consider the following replacement probe:

probe timer.s(3)
{
 foreach (count in reads- limit 10)
 printf("%s : %d \n", count, reads[count])
}

This foreach statement instructs the script to process the elements in the array reads in descending
order (of associated value). The limit 10 option instructs the foreach to only process the first ten
iterations (that is, print the first 10, starting with the highest value).

3.5.5. Clearing/Deleting Arrays and Array Elements

Sometimes, you may need to clear the associated values in array elements, or reset an entire array for
re-use in another probe. Example 3.17, “cumulative-vfsreads.stp” in Section 3.5.4, “Processing Multiple
Elements in an Array” allows you to track how the number of VFS reads per process grows over time, but
it does not show you the number of VFS reads each process makes per 3-second period.

To do that, you will need to clear the values accumulated by the array. You can accomplish this using the
delete operator to delete elements in an array, or an entire array. Consider the following example:

29

Chapter 3. Understanding How SystemTap Works

Example 3.18. noncumulative-vfsreads.stp

global reads
probe vfs.read
{
 reads[execname()] ++
}
probe timer.s(3)
{
 foreach (count in reads)
 printf("%s : %d \n", count, reads[count])
 delete reads
}

In Example 3.18, “noncumulative-vfsreads.stp”, the second probe prints the number of VFS reads each
process made within the probed 3-second period only. The delete reads statement clears the reads
array within the probe.

30

Using Arrays in Conditional Statements

Note

You can have multiple array operations within the same probe. Using the examples from
Section 3.5.4, “Processing Multiple Elements in an Array” and Section 3.5.5, “Clearing/Deleting
Arrays and Array Elements” , you can track the number of VFS reads each process makes per 3-
second period and tally the cumulative VFS reads of those same processes. Consider the following
example:

global reads, totalreads

probe vfs.read
{
 reads[execname()] ++
 totalreads[execname()] ++
}

probe timer.s(3)
{
 printf("=======\n")
 foreach (count in reads-)
 printf("%s : %d \n", count, reads[count])
 delete reads
}

probe end
{
 printf("TOTALS\n")
 foreach (total in totalreads-)
 printf("%s : %d \n", total, totalreads[total])
}

In this example, the arrays reads and totalreads track the same information, and are printed
out in a similar fashion. The only difference here is that reads is cleared every 3-second period,
whereas totalreads keeps growing.

3.5.6. Using Arrays in Conditional Statements

You can also use associative arrays in if statements. This is useful if you want to execute a subroutine
once a value in the array matches a certain condition. Consider the following example:

Example 3.19. vfsreads-print-if-1kb.stp

global reads
probe vfs.read
{
 reads[execname()] ++
}

probe timer.s(3)

31

Chapter 3. Understanding How SystemTap Works

{
 printf("=======\n")
 foreach (count in reads-)
 if (reads[count] >= 1024)
 printf("%s : %dkB \n", count, reads[count]/1024)
 else
 printf("%s : %dB \n", count, reads[count])
}

Every three seconds, Example 3.19, “vfsreads-print-if-1kb.stp” prints out a list of all processes, along with
how many times each process performed a VFS read. If the associated value of a process name is equal
or greater than 1024, the if statement in the script converts and prints it out in kB.

Testing for Membership

You can also test whether a specific unique key is a member of an array. Further, membership in an array
can be used in if statements, as in:

if([index_expression] in array_name) statement

To illustrate this, consider the following example:

Example 3.20. vfsreads-stop-on-stapio2.stp

global reads

probe vfs.read
{
 reads[execname()] ++
}

probe timer.s(3)
{
 printf("=======\n")
 foreach (count in reads+)
 printf("%s : %d \n", count, reads[count])
 if(["stapio"] in reads) {
 printf("stapio read detected, exiting\n")
 exit()
 }
}

The if(["stapio"] in reads) statement instructs the script to print stapio read detected,
exiting once the unique key stapio is added to the array reads.

3.5.7. Computing for Statistical Aggregates

Statistical aggregates are used to collect statistics on numerical values where it is important to accumulate
new data quickly and in large volume (that is, storing only aggregated stream statistics). Statistical
aggregates can be used in global variables or as elements in an array.

32

Computing for Statistical Aggregates

To add value to a statistical aggregate, use the operator <<< value.

Example 3.21. stat-aggregates.stp

global reads
probe vfs.read
{
 reads[execname()] <<< $count
}

In Example 3.21, “stat-aggregates.stp”, the operator <<< $count stores the amount returned by $count
to the associated value of the corresponding execname() in the reads array. Remember, these
values are stored; they are not added to the associated values of each unique key, nor are they used
to replace the current associated values. In a manner of speaking, think of it as having each unique key
(execname()) having multiple associated values, accumulating with each probe handler run.

Note

In the context of Example 3.21, “stat-aggregates.stp”, count returns the amount of data read by the
returned execname() to the virtual file system.

To extract data collected by statistical aggregates, use the syntax format @extractor(variable/
array index expression). extractor can be any of the following integer extractors:

count

Returns the number of all values stored into the variable/array index expression. Given the sample
probe in Example 3.21, “stat-aggregates.stp”, the expression @count(reads[execname()]) will
return how many values are stored in each unique key in array reads.

sum

Returns the sum of all values stored into the variable/array index expression. Again, given sample
probe in Example 3.21, “stat-aggregates.stp”, the expression @sum(reads[execname()]) will
return the total of all values stored in each unique key in array reads.

min

Returns the smallest among all the values stored in the variable/array index expression.

max

Returns the largest among all the values stored in the variable/array index expression.

33

Chapter 3. Understanding How SystemTap Works

avg

Returns the average of all values stored in the variable/array index expression.

When using statistical aggregates, you can also build array constructs that use multiple index expressions
(to a maximum of 5). This is helpful in capturing additional contextual information during a probe. For
example:

Example 3.22. Multiple Array Indexes

global reads
probe vfs.read
{
 reads[execname(),pid()] <<< 1
}
probe timer.s(3)
{
 foreach([var1,var2] in reads)
 printf("%s (%d) : %d \n", var1, var2, @count(reads[var1,var2]))
}

In Example 3.22, “Multiple Array Indexes”, the first probe tracks how many times each process performs a
VFS read. What makes this different from earlier examples is that this array associates a performed read
to both a process name and its corresponding process ID.

The second probe in Example 3.22, “Multiple Array Indexes” demonstrates how to process and print the
information collected by the array reads. Note how the foreach statement uses the same number of
variables (that is, var1 and var2) contained in the first instance of the array reads from the first probe.

3.6. Tapsets

Tapsets are scripts that form a library of pre-written probes and functions to be used in SystemTap scripts.
When a user runs a SystemTap script, SystemTap checks the script's probe events and handlers against
the tapset library; SystemTap then loads the corresponding probes and functions before translating the
script to C (refer to Section 3.1, “Architecture” for information on what transpires in a SystemTap session).

Like SystemTap scripts, tapsets use the file name extension .stp. The standard library of tapsets is
located in /usr/share/systemtap/tapset/ by default. However, unlike SystemTap scripts, tapsets
are not meant for direct execution; rather, they constitute the library from which other scripts can pull
definitions.

The tapset library is an abstraction layer designed to make it easier for users to define events and
functions. Tapsets provide useful aliases for functions that users may want to specify as an event;
knowing the proper alias to use is, for the most part, easier than remembering specific kernel functions
that might vary between kernel versions.

Several handlers and functions in Section 3.2.1, “Event” and SystemTap Functions are defined in tapsets.
For example, thread_indent() is defined in indent.stp.

34

Chapter 4.

User-space Probing
SystemTap initially focused on kernel-space probing. Because there are many instances where user-
space probing can help diagnose a problem, SystemTap 0.6 added support to allow probing user-space
processes. SystemTap can probe the entry into and return from a function in user-space processes, probe
predefined markers in user-space code, and monitor user-process events.

SystemTap requires the uprobes module to perform user-space probing. If your Linux kernel is version 3.5
or higher, it already includes uprobes. To verify that the current kernel supports uprobes natively, run the
following command:

grep CONFIG_UPROBES /boot/config-`uname -r`

If uprobes is integrated, the output of this command is as follows:

CONFIG_UPROBES=y

If you are running a kernel prior to version 3.5, SystemTap automatically builds the uprobes module.
However, you also need the utrace kernel extensions required by the SystemTap user-space probing
to track various user-space events. More details about the utrace infrastructure are available at http://
sourceware.org/systemtap/wiki/utrace. To determine whether the currently running Linux kernel provides
the needed utrace support, type the following at a shell prompt:

grep CONFIG_UTRACE /boot/config-`uname -r`

If the Linux kernel supports user-space probing, the command produces the following output:

CONFIG_UTRACE=y

4.1. User-Space Events

All user-space event probes begin with process. You can limit the process events to a specific running
process by specifying the process ID. You can also limit the process events to monitor a particular
executable by specifying the path to the executable (PATH). SystemTap makes use of the PATH
environment variable, which allows you to use both the name used on the command-line to start the
executable and the absolute path to the executable.

Several of the user-space probe events limit their scope to a particular executable name (PATH), because
SystemTap must use debug information to statically analyze where to place the probes. But for many
user-space probe events, the process ID and executable name are optional. Any process event in
the list below that include process ID or the path to the executable must include those arguments. The
process ID and path to the executable are optional for the process events that do not list them:

process("PATH").function("function")
The entry to the user-space function function for the executable PATH. This event is the user-space
analogue of the kernel.function("function") event. It allows wildcards for the function
function and .return suffix.

35

http://sourceware.org/systemtap/wiki/utrace
http://sourceware.org/systemtap/wiki/utrace

Chapter 4. User-space Probing

process("PATH").statement("statement")
The earliest instruction in the code for statement. This is the user-space analogue of
kernel.statement("statement").

process("PATH").mark("marker")
The static probe point marker defined in PATH. You can use wildcards for marker to specify multiple
marks with a single probe. The static probe points may also have numbered arguments ($1, $2, and
so on) available to the probe.

A variety of user-space packages such as Java include these static probe points. Most packages that
provide static probe points also provide aliases for the raw user-space mark events. Below is one
such alias for the x86_64 Java hotspot JVM:

probe hotspot.gc_begin =
 process("/usr/lib/jvm/java-1.6.0-openjdk-1.6.0.0.x86_64/jre/lib/amd64/server/
libjvm.so").mark("gc__begin")

process.begin
A user-space process is created. You can limit this to a particular process ID or a full path to the
executable.

process.thread.begin
A user-space thread is created. You can limit this to a particular process ID or a full path to the
executable.

process.end
A user-space process dies. You can limit this to a particular process ID or a full path to the
executable.

process.thread.end
A user-space thread is destroyed. You can limit this to a particular process ID or a full path to the
executable.

process.syscall
A user-space process makes a system call. The system call number is available in the $syscall
context variable, and the fist six arguments are available in $arg1 through $arg6. The .return
suffix places the probe at the return from the system call. For syscall.return, the return value is
available through the $return context variable.

You can limit this to a particular process ID or a full path to the executable.

4.2. Accessing User-Space Target Variables

You can access user-space target variables in the same manner as described in Section 3.3.2, “Target
Variables”. In Linux, however, there are separate address spaces for the user and kernel code. When
using the -> operator, SystemTap accesses the appropriate address space.

For pointers to base types such as integers and strings, there are a number of functions listed below to
access user-space data. The first argument for each functions is the pointer to the data item.

36

User-Space Stack Backtraces

user_char(address)
Obtains the character at address for the current user process.

user_short(address)
Obtains the short integer at address for the current user process.

user_int(address)
Obtains the integer at address for the current user process.

user_long(address)
Obtains the long integer at address for the current user process.

user_string(address)
Obtains the string at address for the current user process.

user_string_n(address, n)
Obtains the string at address for the current user process and limits the string to n bytes.

4.3. User-Space Stack Backtraces

The probe point (pp) function indicates which particular event triggered the SystemTap event handler.
A probe on the entry into a function would list the function name. However, in many cases the same
probe point event may be triggered by many different modules in the program; this is particularly true
for functions in shared libraries. A SystemTap backtrace of the user-space stack can provide additional
context on how the probe point event is triggered.

The user-space stack backtrace generation is complicated by the compiler producing code optimized to
eliminate stack frame pointers. However, the compiler also includes information in the debug information
section to allow debugging tools to produce stack backtraces. SystemTap user-space stack backtrace
mechanism makes use of that debug information to walk the stack to generate stack traces for 32-bit and
64-bit x86 processors; other processor architectures do not yet support the use of debug information to
unwind the user-space stack. To ensure that the needed debug information is used to produce the user-
space stack backtraces, use the -d executable option for executables and --ldd for shared libraries.

For example, you can use the user-space backtrack functions to see how the xmalloc function is being
called by the ls command. With the debuginfo for the ls command installed, the following SystemTap
command provides a backtrace each time the xmalloc function is called:

stap -d /bin/ls --ldd \
-e 'probe process("ls").function("xmalloc") {print_usyms(ubacktrace())}' \
-c "ls /"

When executed, this command produces output similar to the following:

bin dev lib media net proc sbin sys var
boot etc lib64 misc op_session profilerc selinux tmp
cgroup home lost+found mnt opt root srv usr
 0x4116c0 : xmalloc+0x0/0x20 [/bin/ls]
 0x4116fc : xmemdup+0x1c/0x40 [/bin/ls]
 0x40e68b : clone_quoting_options+0x3b/0x50 [/bin/ls]

37

Chapter 4. User-space Probing

 0x4087e4 : main+0x3b4/0x1900 [/bin/ls]
 0x3fa441ec5d : __libc_start_main+0xfd/0x1d0 [/lib64/libc-2.12.so]
 0x402799 : _start+0x29/0x2c [/bin/ls]
 0x4116c0 : xmalloc+0x0/0x20 [/bin/ls]
 0x4116fc : xmemdup+0x1c/0x40 [/bin/ls]
 0x40e68b : clone_quoting_options+0x3b/0x50 [/bin/ls]
 0x40884a : main+0x41a/0x1900 [/bin/ls]
 0x3fa441ec5d : __libc_start_main+0xfd/0x1d0 [/lib64/libc-2.12.so]
 ...

For more details on the functions available for user-space stack backtraces, refer to ucontext-
symbols.stp and ucontext-unwind.stp tapsets. You can also find the description of the functions in
the aforementioned tapsets in the SystemTap Tapset Reference Manual.

38

Chapter 5.

Useful SystemTap Scripts
This chapter enumerates several SystemTap scripts you can use to monitor and investigate
different subsystems. All of these scripts are available at /usr/share/systemtap/testsuite/
systemtap.examples/ once you install the systemtap-testsuite RPM.

5.1. Network
The following sections showcase scripts that trace network-related functions and build a profile of network
activity.

5.1.1. Network Profiling

This section describes how to profile network activity. nettop.stp provides a glimpse into how much
network traffic each process is generating on a machine.

nettop.stp

#! /usr/bin/env stap

global ifxmit, ifrecv
global ifmerged

probe netdev.transmit
{
 ifxmit[pid(), dev_name, execname(), uid()] <<< length
 ifmerged[pid(), dev_name, execname(), uid()] <<< 1
}

probe netdev.receive
{
 ifrecv[pid(), dev_name, execname(), uid()] <<< length
 ifmerged[pid(), dev_name, execname(), uid()] <<< 1
}

function print_activity()
{
 printf("%5s %5s %-12s %7s %7s %7s %7s %-15s\n",
 "PID", "UID", "DEV", "XMIT_PK", "RECV_PK",
 "XMIT_KB", "RECV_KB", "COMMAND")

 foreach ([pid, dev, exec, uid] in ifmerged-) {
 n_xmit = @count(ifxmit[pid, dev, exec, uid])
 n_recv = @count(ifrecv[pid, dev, exec, uid])
 printf("%5d %5d %-12s %7d %7d %7d %7d %-15s\n",
 pid, uid, dev, n_xmit, n_recv,
 @sum(ifxmit[pid, dev, exec, uid])/1024,
 @sum(ifrecv[pid, dev, exec, uid])/1024,
 exec)
 }

 print("\n")

 delete ifxmit
 delete ifrecv

39

Chapter 5. Useful SystemTap Scripts

 delete ifmerged
}

probe timer.ms(5000), end, error
{
 print_activity()
}

Note that function print_activity() uses the following expressions:

n_xmit ? @sum(ifxmit[pid, dev, exec, uid])/1024 : 0
n_recv ? @sum(ifrecv[pid, dev, exec, uid])/1024 : 0

These expressions are if/else conditionals. The first statement is a more concise way of writing the
following psuedo code:

if n_recv != 0 then
 @sum(ifrecv[pid, dev, exec, uid])/1024
else
 0

nettop.stp tracks which processes are generating network traffic on the system, and provides the following
information about each process:

• PID — the ID of the listed process.

• UID — user ID. A user ID of 0 refers to the root user.

• DEV — which ethernet device the process used to send / receive data (for example, eth0, eth1)

• XMIT_PK — number of packets transmitted by the process

• RECV_PK — number of packets received by the process

• XMIT_KB — amount of data sent by the process, in kilobytes

• RECV_KB — amount of data received by the service, in kilobytes

nettop.stp provides network profile sampling every 5 seconds. You can change this setting by editing
probe timer.ms(5000) accordingly. Example 5.1, “nettop.stp Sample Output” contains an excerpt of
the output from nettop.stp over a 20-second period:

Example 5.1. nettop.stp Sample Output

[...]
 PID UID DEV XMIT_PK RECV_PK XMIT_KB RECV_KB COMMAND
 0 0 eth0 0 5 0 0 swapper
11178 0 eth0 2 0 0 0 synergyc

 PID UID DEV XMIT_PK RECV_PK XMIT_KB RECV_KB COMMAND
 2886 4 eth0 79 0 5 0 cups-polld
11362 0 eth0 0 61 0 5 firefox
 0 0 eth0 3 32 0 3 swapper
 2886 4 lo 4 4 0 0 cups-polld

40

Tracing Functions Called in Network Socket Code

11178 0 eth0 3 0 0 0 synergyc

 PID UID DEV XMIT_PK RECV_PK XMIT_KB RECV_KB COMMAND
 0 0 eth0 0 6 0 0 swapper
 2886 4 lo 2 2 0 0 cups-polld
11178 0 eth0 3 0 0 0 synergyc
 3611 0 eth0 0 1 0 0 Xorg

 PID UID DEV XMIT_PK RECV_PK XMIT_KB RECV_KB COMMAND
 0 0 eth0 3 42 0 2 swapper
11178 0 eth0 43 1 3 0 synergyc
11362 0 eth0 0 7 0 0 firefox
 3897 0 eth0 0 1 0 0 multiload-apple
[...]

5.1.2. Tracing Functions Called in Network Socket Code

This section describes how to trace functions called from the kernel's net/socket.c file. This task helps
you identify, in finer detail, how each process interacts with the network at the kernel level.

socket-trace.stp

#! /usr/bin/env stap

probe kernel.function("*@net/socket.c").call {
 printf ("%s -> %s\n", thread_indent(1), ppfunc())
}
probe kernel.function("*@net/socket.c").return {
 printf ("%s <- %s\n", thread_indent(-1), ppfunc())
}

socket-trace.stp is identical to Example 3.6, “thread_indent.stp”, which was earlier used in SystemTap
Functions to illustrate how thread_indent() works.

Example 5.2. socket-trace.stp Sample Output

[...]
0 Xorg(3611): -> sock_poll
3 Xorg(3611): <- sock_poll
0 Xorg(3611): -> sock_poll
3 Xorg(3611): <- sock_poll
0 gnome-terminal(11106): -> sock_poll
5 gnome-terminal(11106): <- sock_poll
0 scim-bridge(3883): -> sock_poll
3 scim-bridge(3883): <- sock_poll
0 scim-bridge(3883): -> sys_socketcall
4 scim-bridge(3883): -> sys_recv
8 scim-bridge(3883): -> sys_recvfrom
12 scim-bridge(3883):-> sock_from_file
16 scim-bridge(3883):<- sock_from_file
20 scim-bridge(3883):-> sock_recvmsg
24 scim-bridge(3883):<- sock_recvmsg
28 scim-bridge(3883): <- sys_recvfrom
31 scim-bridge(3883): <- sys_recv
35 scim-bridge(3883): <- sys_socketcall

41

Chapter 5. Useful SystemTap Scripts

[...]

Example 5.2, “socket-trace.stp Sample Output” contains a 3-second excerpt of the output for socket-
trace.stp. For more information about the output of this script as provided by thread_indent(), refer to
SystemTap Functions Example 3.6, “thread_indent.stp”.

5.1.3. Monitoring Incoming TCP Connections

This section illustrates how to monitor incoming TCP connections. This task is useful in identifying any
unauthorized, suspicious, or otherwise unwanted network access requests in real time.

tcp_connections.stp

#! /usr/bin/env stap

probe begin {
 printf("%6s %16s %6s %6s %16s\n",
 "UID", "CMD", "PID", "PORT", "IP_SOURCE")
}

probe kernel.{function("tcp_accept"),function("inet_csk_accept")}.return? {
 sock = $return
 if (sock != 0)
 printf("%6d %16s %6d %6d %16s\n", uid(), execname(), pid(),
 inet_get_local_port(sock), inet_get_ip_source(sock))
}

While tcp_connections.stp is running, it will print out the following information about any incoming TCP
connections accepted by the system in real time:

• Current UID

• CMD - the command accepting the connection

• PID of the command

• Port used by the connection

• IP address from which the TCP connection originated

Example 5.3. tcp_connections.stp Sample Output

UID CMD PID PORT IP_SOURCE
0 sshd 3165 22 10.64.0.227
0 sshd 3165 22 10.64.0.227

5.1.4. Monitoring TCP Packets

This section illustrates how to monitor TCP packets received by the system. This is useful in analyzing
network traffic generated by applications running on the system.

42

Monitoring TCP Packets

tcpdumplike.stp

 #! /usr/bin/env stap

// A TCP dump like example

probe begin, timer.s(1) {
 printf("---\n")
 printf(" Source IP Dest IP SPort DPort U A P R S F \n")
 printf("---\n")
}

probe udp.recvmsg /* ,udp.sendmsg */ {
 printf(" %15s %15s %5d %5d UDP\n",
 saddr, daddr, sport, dport)
}

probe tcp.receive {
 printf(" %15s %15s %5d %5d %d %d %d %d %d %d\n",
 saddr, daddr, sport, dport, urg, ack, psh, rst, syn, fin)
}

While tcpdumplike.stp is running, it will print out the following information about any received TCP packets
in real time:

• Source and destination IP address (saddr, daddr, respectively)

• Source and destination ports (sport, dport, respectively)

• Packet flags

To determine the flags used by the packet, tcpdumplike.stp uses the following functions:

• urg - urgent

• ack - acknowledgement

• psh - push

• rst - reset

• syn - synchronize

• fin - finished

The aforementioned functions return 1 or 0 to specify whether the packet uses the corresponding flag.

Example 5.4. tcpdumplike.stp Sample Output

 Source IP Dest IP SPort DPort U A P R S F

 209.85.229.147 10.0.2.15 80 20373 0 1 1 0 0 0
 92.122.126.240 10.0.2.15 80 53214 0 1 0 0 1 0
 92.122.126.240 10.0.2.15 80 53214 0 1 0 0 0 0
 209.85.229.118 10.0.2.15 80 63433 0 1 0 0 1 0
 209.85.229.118 10.0.2.15 80 63433 0 1 0 0 0 0
 209.85.229.147 10.0.2.15 80 21141 0 1 1 0 0 0

43

Chapter 5. Useful SystemTap Scripts

 209.85.229.147 10.0.2.15 80 21141 0 1 1 0 0 0
 209.85.229.147 10.0.2.15 80 21141 0 1 1 0 0 0
 209.85.229.147 10.0.2.15 80 21141 0 1 1 0 0 0
 209.85.229.147 10.0.2.15 80 21141 0 1 1 0 0 0
 209.85.229.118 10.0.2.15 80 63433 0 1 1 0 0 0
[...]

5.1.5. Monitoring Network Packets Drops in Kernel

 The network stack in Linux can discard packets for various reasons. Some Linux kernels include
a tracepoint, kernel.trace("kfree_skb"), which easily tracks where packets are discarded.
dropwatch.stp uses kernel.trace("kfree_skb") to trace packet discards; the script summarizes
which locations discard packets every five-second interval.

dropwatch.stp

#! /usr/bin/env stap

##
Dropwatch.stp
Author: Neil Horman <nhorman@redhat.com>
An example script to mimic the behavior of the dropwatch utility
http://fedorahosted.org/dropwatch
##

Array to hold the list of drop points we find
global locations

Note when we turn the monitor on and off
probe begin { printf("Monitoring for dropped packets\n") }
probe end { printf("Stopping dropped packet monitor\n") }

increment a drop counter for every location we drop at
probe kernel.trace("kfree_skb") { locations[$location] <<< 1 }

Every 5 seconds report our drop locations
probe timer.sec(5)
{
 printf("\n")
 foreach (l in locations-) {
 printf("%d packets dropped at %s\n",
 @count(locations[l]), symname(l))
 }
 delete locations
}

The kernel.trace("kfree_skb") traces which places in the kernel drop network packets. The
kernel.trace("kfree_skb") has two arguments: a pointer to the buffer being freed ($skb) and
the location in kernel code the buffer is being freed ($location). The dropwatch.stp script provides the
function containing $location where possible. The information to map $location back to the function
is not in the instrumentation by default. On SystemTap 1.4 the --all-modules option will include the
required mapping information and the following command can be used to run the script:

stap --all-modules dropwatch.stp

44

Disk

On older versions of SystemTap you can use the following command to emulate the --all-modules
option:

stap -dkernel \
`cat /proc/modules | awk 'BEGIN { ORS = " " } {print "-d"$1}'` \
dropwatch.stp

Running the dropwatch.stp script 15 seconds would result in output similar in Example 5.5, “dropwatch.stp
Sample Output”. The output lists the number of misses for each tracepoint location with either the function
name or the address.

Example 5.5. dropwatch.stp Sample Output

Monitoring for dropped packets

1762 packets dropped at unix_stream_recvmsg
4 packets dropped at tun_do_read
2 packets dropped at nf_hook_slow

467 packets dropped at unix_stream_recvmsg
20 packets dropped at nf_hook_slow
6 packets dropped at tun_do_read

446 packets dropped at unix_stream_recvmsg
4 packets dropped at tun_do_read
4 packets dropped at nf_hook_slow
Stopping dropped packet monitor

When the script is being compiled on one machine and run on another the --all-modules and /proc/
modules directory are not available; the symname function will just print out the raw address. To make
the raw address of packet drops more meaningful, refer to the /boot/System.map-`uname -r` file.
This file lists the starting addresses for each function, allowing you to map the addresses in the output
of Example 5.5, “dropwatch.stp Sample Output” to a specific function name. Given the following snippet
of the /boot/System.map-`uname -r` file, the address 0xffffffff8149a8ed maps to the function
unix_stream_recvmsg:

[...]
ffffffff8149a420 t unix_dgram_poll
ffffffff8149a5e0 t unix_stream_recvmsg
ffffffff8149ad00 t unix_find_other
[...]

5.2. Disk
The following sections showcase scripts that monitor disk and I/O activity.

5.2.1. Summarizing Disk Read/Write Traffic

This section describes how to identify which processes are performing the heaviest disk reads/writes to
the system.

45

Chapter 5. Useful SystemTap Scripts

disktop.stp

#!/usr/bin/env stap
#
Copyright (C) 2007 Oracle Corp.
#
Get the status of reading/writing disk every 5 seconds,
output top ten entries
#
This is free software,GNU General Public License (GPL);
either version 2, or (at your option) any later version.
#
Usage:
./disktop.stp
#

global io_stat,device
global read_bytes,write_bytes

probe vfs.read.return {
 if (returnval()>0) {
 if (devname!="N/A") {/*skip read from cache*/
 io_stat[pid(),execname(),uid(),ppid(),"R"] += returnval()
 device[pid(),execname(),uid(),ppid(),"R"] = devname
 read_bytes += returnval()
 }
 }
}

probe vfs.write.return {
 if (returnval()>0) {
 if (devname!="N/A") { /*skip update cache*/
 io_stat[pid(),execname(),uid(),ppid(),"W"] += returnval()
 device[pid(),execname(),uid(),ppid(),"W"] = devname
 write_bytes += returnval()
 }
 }
}

probe timer.ms(5000) {
 /* skip non-read/write disk */
 if (read_bytes+write_bytes) {

 printf("\n%-25s, %-8s%4dKb/sec, %-7s%6dKb, %-7s%6dKb\n\n",
 ctime(gettimeofday_s()),
 "Average:", ((read_bytes+write_bytes)/1024)/5,
 "Read:",read_bytes/1024,
 "Write:",write_bytes/1024)

 /* print header */
 printf("%8s %8s %8s %25s %8s %4s %12s\n",
 "UID","PID","PPID","CMD","DEVICE","T","BYTES")
 }
 /* print top ten I/O */
 foreach ([process,cmd,userid,parent,action] in io_stat- limit 10)
 printf("%8d %8d %8d %25s %8s %4s %12d\n",
 userid,process,parent,cmd,
 device[process,cmd,userid,parent,action],
 action,io_stat[process,cmd,userid,parent,action])

 /* clear data */
 delete io_stat

46

Summarizing Disk Read/Write Traffic

 delete device
 read_bytes = 0
 write_bytes = 0
}

probe end{
 delete io_stat
 delete device
 delete read_bytes
 delete write_bytes
}

disktop.stp outputs the top ten processes responsible for the heaviest reads/writes to disk. Example 5.6,
“disktop.stp Sample Output” displays a sample output for this script, and includes the following data per
listed process:

• UID — user ID. A user ID of 0 refers to the root user.

• PID — the ID of the listed process.

• PPID — the process ID of the listed process's parent process.

• CMD — the name of the listed process.

• DEVICE — which storage device the listed process is reading from or writing to.

• T — the type of action performed by the listed process; W refers to write, while R refers to read.

• BYTES — the amount of data read to or written from disk.

The time and date in the output of disktop.stp is returned by the functions ctime() and
gettimeofday_s(). ctime() derives calendar time in terms of seconds passed since the Unix epoch
(January 1, 1970). gettimeofday_s() counts the actual number of seconds since Unix epoch, which
gives a fairly accurate human-readable timestamp for the output.

In this script, the $return is a local variable that stores the actual number of bytes each process
reads or writes from the virtual file system. $return can only be used in return probes (for example,
vfs.read.return and vfs.read.return).

Example 5.6. disktop.stp Sample Output

[...]
Mon Sep 29 03:38:28 2008 , Average: 19Kb/sec, Read: 7Kb, Write: 89Kb

UID PID PPID CMD DEVICE T BYTES
0 26319 26294 firefox sda5 W 90229
0 2758 2757 pam_timestamp_c sda5 R 8064
0 2885 1 cupsd sda5 W 1678

Mon Sep 29 03:38:38 2008 , Average: 1Kb/sec, Read: 7Kb, Write: 1Kb

UID PID PPID CMD DEVICE T BYTES
0 2758 2757 pam_timestamp_c sda5 R 8064
0 2885 1 cupsd sda5 W 1678

47

Chapter 5. Useful SystemTap Scripts

5.2.2. Tracking I/O Time For Each File Read or Write

This section describes how to monitor the amount of time it takes for each process to read from or write to
any file. This is useful to determine what files are slow to load on a given system.

iotime.stp

#! /usr/bin/env stap

/*
 * Copyright (C) 2006-2018 Red Hat Inc.
 *
 * This copyrighted material is made available to anyone wishing to use,
 * modify, copy, or redistribute it subject to the terms and conditions
 * of the GNU General Public License v.2.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.
 *
 * Print out the amount of time spent in the read and write systemcall
 * when each file opened by the process is closed. Note that the systemtap
 * script needs to be running before the open operations occur for
 * the script to record data.
 *
 * This script could be used to to find out which files are slow to load
 * on a machine. e.g.
 *
 * stap iotime.stp -c 'firefox'
 *
 * Output format is:
 * timestamp pid (executabable) info_type path ...
 *
 * 200283135 2573 (cupsd) access /etc/printcap read: 0 write: 7063
 * 200283143 2573 (cupsd) iotime /etc/printcap time: 69
 *
 */

global start
global time_io

function timestamp:long() { return gettimeofday_us() - start }

function proc:string() { return sprintf("%d (%s)", pid(), execname()) }

probe begin { start = gettimeofday_us() }

global possible_filename, filehandles, fileread, filewrite

probe syscall.open, syscall.openat {
 possible_filename[tid()] = filename
}

probe syscall.open.return, syscall.openat.return {
 // Get filename even if non-dwarf syscall return probe are used.
 filename = possible_filename[tid()]
 delete possible_filename[tid()]
 if (retval != -1) {
 filehandles[pid(), retval] = filename
 } else {

48

Tracking I/O Time For Each File Read or Write

 printf("%d %s access %s fail\n", timestamp(), proc(), filename)
 }
}

global read_fds, write_fds

probe syscall.read { read_fds[tid()] = fd }

probe syscall.read.return {
 p = pid()
 // Get fd even if non-dwarf syscall return probe.
 fd = read_fds[tid()]
 delete read_fds[tid()]
 bytes = retval
 time = gettimeofday_us() - @entry(gettimeofday_us())
 if (bytes > 0)
 fileread[p, fd] <<< bytes
 time_io[p, fd] <<< time
}

probe syscall.write { write_fds[tid()] = fd }

probe syscall.write.return {
 p = pid()
 // Get fd even if non-dwarf syscall return probe.
 fd = write_fds[tid()]
 delete write_fds[tid()]
 bytes = retval
 time = gettimeofday_us() - @entry(gettimeofday_us())
 if (bytes > 0)
 filewrite[p, fd] <<< bytes
 time_io[p, fd] <<< time
}

probe syscall.close {
 if ([pid(), fd] in filehandles) {
 printf("%d %s access %s read: %d write: %d\n",
 timestamp(), proc(), filehandles[pid(), fd],
 @sum(fileread[pid(), fd]), @sum(filewrite[pid(), fd]))
 if (@count(time_io[pid(), fd]))
 printf("%d %s iotime %s time: %d\n", timestamp(), proc(),
 filehandles[pid(), fd], @sum(time_io[pid(), fd]))
 }
 delete fileread[pid(), fd]
 delete filewrite[pid(), fd]
 delete filehandles[pid(), fd]
 delete time_io[pid(),fd]
}

iotime.stp tracks each time a system call opens, closes, reads from, and writes to a file. For each file any
system call accesses, iotime.stp counts the number of microseconds it takes for any reads or writes to
finish and tracks the amount of data (in bytes) read from or written to the file.

iotime.stp also uses the local variable $count to track the amount of data (in bytes) that any system call
attempts to read or write. Note that $return (as used in disktop.stp from Section 5.2.1, “Summarizing
Disk Read/Write Traffic”) stores the actual amount of data read/written. $count can only be used on
probes that track data reads or writes (that is, syscall.read and syscall.write).

49

Chapter 5. Useful SystemTap Scripts

Example 5.7. iotime.stp Sample Output

[...]
825946 3364 (NetworkManager) access /sys/class/net/eth0/carrier read: 8190 write: 0
825955 3364 (NetworkManager) iotime /sys/class/net/eth0/carrier time: 9
[...]
117061 2460 (pcscd) access /dev/bus/usb/003/001 read: 43 write: 0
117065 2460 (pcscd) iotime /dev/bus/usb/003/001 time: 7
[...]
3973737 2886 (sendmail) access /proc/loadavg read: 4096 write: 0
3973744 2886 (sendmail) iotime /proc/loadavg time: 11
[...]

Example 5.7, “iotime.stp Sample Output” prints out the following data:

• A timestamp, in microseconds.

• Process ID and process name.

• An access or iotime flag.

• The file accessed.

If a process was able to read or write any data, a pair of access and iotime lines should appear
together. The access line's timestamp refers to the time that a given process started accessing a file; at
the end of the line, it will show the amount of data read/written (in bytes). The iotime line will show the
amount of time (in microseconds) that the process took in order to perform the read or write.

If an access line is not followed by an iotime line, it means that the process did not read or write any
data.

5.2.3. Track Cumulative IO

This section describes how to track the cumulative amount of I/O to the system.

traceio.stp

#! /usr/bin/env stap
traceio.stp
Copyright (C) 2007-2018 Red Hat, Inc., Eugene Teo <eteo@redhat.com>
Copyright (C) 2009 Kai Meyer <kai@unixlords.com>
Fixed a bug that allows this to run longer
And added the humanreadable function
#
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License version 2 as
published by the Free Software Foundation.
#

global reads, writes, total_io

probe vfs.read.return {
 if (returnval() > 0) {

50

Track Cumulative IO

 reads[pid(),execname()] += returnval()
 total_io[pid(),execname()] += returnval()
 }
}

probe vfs.write.return {
 if (returnval() > 0) {
 writes[pid(),execname()] += returnval()
 total_io[pid(),execname()] += returnval()
 }
}

function humanreadable(bytes) {
 if (bytes > 1024*1024*1024) {
 return sprintf("%d GiB", bytes/1024/1024/1024)
 } else if (bytes > 1024*1024) {
 return sprintf("%d MiB", bytes/1024/1024)
 } else if (bytes > 1024) {
 return sprintf("%d KiB", bytes/1024)
 } else {
 return sprintf("%d B", bytes)
 }
}

probe timer.s(1) {
 foreach([p,e] in total_io- limit 10)
 printf("%8d %15s r: %12s w: %12s\n",
 p, e, humanreadable(reads[p,e]),
 humanreadable(writes[p,e]))
 printf("\n")
 # Note we don't zero out reads, writes and total_io,
 # so the values are cumulative since the script started.
}

traceio.stp prints the top ten executables generating I/O traffic over time. In addition, it also tracks the
cumulative amount of I/O reads and writes done by those ten executables. This information is tracked and
printed out in 1-second intervals, and in descending order.

Note that traceio.stp also uses the local variable $return, which is also used by disktop.stp from
Section 5.2.1, “Summarizing Disk Read/Write Traffic”.

Example 5.8. traceio.stp Sample Output

[...]
 Xorg r: 583401 KiB w: 0 KiB
 floaters r: 96 KiB w: 7130 KiB
multiload-apple r: 538 KiB w: 537 KiB
 sshd r: 71 KiB w: 72 KiB
pam_timestamp_c r: 138 KiB w: 0 KiB
 staprun r: 51 KiB w: 51 KiB
 snmpd r: 46 KiB w: 0 KiB
 pcscd r: 28 KiB w: 0 KiB
 irqbalance r: 27 KiB w: 4 KiB
 cupsd r: 4 KiB w: 18 KiB

 Xorg r: 588140 KiB w: 0 KiB
 floaters r: 97 KiB w: 7143 KiB
multiload-apple r: 543 KiB w: 542 KiB

51

Chapter 5. Useful SystemTap Scripts

 sshd r: 72 KiB w: 72 KiB
pam_timestamp_c r: 138 KiB w: 0 KiB
 staprun r: 51 KiB w: 51 KiB
 snmpd r: 46 KiB w: 0 KiB
 pcscd r: 28 KiB w: 0 KiB
 irqbalance r: 27 KiB w: 4 KiB
 cupsd r: 4 KiB w: 18 KiB

5.2.4. I/O Monitoring (By Device)

This section describes how to monitor I/O activity on a specific device.

traceio2.stp

#! /usr/bin/env stap

global device_of_interest

probe begin {
 /* The following is not the most efficient way to do this.
 One could directly put the result of usrdev2kerndev()
 into device_of_interest. However, want to test out
 the other device functions */
 dev = usrdev2kerndev($1)
 device_of_interest = MKDEV(MAJOR(dev), MINOR(dev))
}

probe vfs.{write,read}
{
 if (dev == device_of_interest)
 printf ("%s(%d) %s 0x%x\n",
 execname(), pid(), ppfunc(), dev)
}

traceio2.stp takes 1 argument: the whole device number. To get this number, use stat -c "0x%D"
directory, where directory is located in the device to be monitored.

The usrdev2kerndev() function converts the whole device number into the format understood by the
kernel. The output produced by usrdev2kerndev() is used in conjunction with the MKDEV(), MINOR(),
and MAJOR() functions to determine the major and minor numbers of a specific device.

The output of traceio2.stp includes the name and ID of any process performing a read/write, the function it
is performing (that is, vfs_read or vfs_write), and the kernel device number.

The following example is an excerpt from the full output of stap traceio2.stp 0x805, where 0x805
is the whole device number of /home. /home resides in /dev/sda5, which is the device we wish to
monitor.

Example 5.9. traceio2.stp Sample Output

[...]

52

Monitoring Reads and Writes to a File

synergyc(3722) vfs_read 0x800005
synergyc(3722) vfs_read 0x800005
cupsd(2889) vfs_write 0x800005
cupsd(2889) vfs_write 0x800005
cupsd(2889) vfs_write 0x800005
[...]

5.2.5. Monitoring Reads and Writes to a File

This section describes how to monitor reads from and writes to a file in real time.

inodewatch.stp

#! /usr/bin/env stap

probe vfs.{write,read}
{
 # dev and ino are defined by vfs.write and vfs.read
 if (dev == MKDEV($1,$2) # major/minor device
 && ino == $3)
 printf ("%s(%d) %s 0x%x/%u\n",
 execname(), pid(), ppfunc(), dev, ino)
}

inodewatch.stp takes the following information about the file as arguments on the command line:

• The file's major device number.

• The file's minor device number.

• The file's inode number.

To get this information, use stat -c '%D %i' filename, where filename is an absolute path.

For instance: to monitor /etc/crontab, run stat -c '%D %i' /etc/crontab first. This gives the
following output:

805 1078319

805 is the base-16 (hexadecimal) device number. The lower two digits are the minor device number
and the upper digits are the major number. 1078319 is the inode number. To start monitoring /etc/
crontab, run stap inodewatch.stp 0x8 0x05 1078319 (The 0x prefixes indicate base-16 values.

The output of this command contains the name and ID of any process performing a read/write, the
function it is performing (that is, vfs_read or vfs_write), the device number (in hex format), and
the inode number. Example 5.10, “inodewatch.stp Sample Output” contains the output of stap
inodewatch.stp 0x8 0x05 1078319 (when cat /etc/crontab is executed while the script is
running) :

53

Chapter 5. Useful SystemTap Scripts

Example 5.10. inodewatch.stp Sample Output

cat(16437) vfs_read 0x800005/1078319
cat(16437) vfs_read 0x800005/1078319

5.2.6. Monitoring Changes to File Attributes

This section describes how to monitor if any processes are changing the attributes of a targeted file, in
real time.

inodewatch2.stp

#! /usr/bin/env stap

global ATTR_MODE = 1

probe kernel.function("notify_change") {
 dev_nr = $dentry->d_inode->i_sb->s_dev
 inode_nr = $dentry->d_inode->i_ino

 if (dev_nr == MKDEV($1,$2) # major/minor device
 && inode_nr == $3
 && $attr->ia_valid & ATTR_MODE)
 printf ("%s(%d) %s 0x%x/%u %o %d\n",
 execname(), pid(), ppfunc(), dev_nr, inode_nr, $attr->ia_mode, uid())
}

Like inodewatch.stp from Section 5.2.5, “Monitoring Reads and Writes to a File”, inodewatch2.stp
takes the targeted file's device number (in integer format) and inode number as arguments. For more
information on how to retrieve this information, refer to Section 5.2.5, “Monitoring Reads and Writes to a
File”.

The output for inodewatch2.stp is similar to that of inodewatch.stp, except that inodewatch2.stp also
contains the attribute changes to the monitored file, as well as the ID of the user responsible (uid()).
Example 5.11, “inodewatch2.stp Sample Output” shows the output of inodewatch2.stp while monitoring /
home/joe/bigfile when user joe executes chmod 777 /home/joe/bigfile and chmod 666 /
home/joe/bigfile.

Example 5.11. inodewatch2.stp Sample Output

chmod(17448) inode_setattr 0x800005/6011835 100777 500
chmod(17449) inode_setattr 0x800005/6011835 100666 500

5.2.7. Periodically Print I/O Block Time

This section describes how to track the amount of time each block I/O requests spends waiting for
completion. This is useful in determining whether there are too many outstanding block I/O operations at
any given time.

54

Periodically Print I/O Block Time

ioblktime.stp

#! /usr/bin/env stap

global req_time%[25000], etimes

probe ioblock.request
{
 req_time[$bio] = gettimeofday_us()
}

probe ioblock.end
{
 t = gettimeofday_us()
 s = req_time[$bio]
 delete req_time[$bio]
 if (s) {
 etimes[devname, bio_rw_str(rw)] <<< t - s
 }
}

/* for time being delete things that get merged with others */
probe kernel.{trace("block_bio_frontmerge"),
 trace("block_bio_backmerge")}
{
 delete req_time[$bio]
}

probe timer.s(10), end {
 ansi_clear_screen()
 printf("%10s %3s %10s %10s %10s\n",
 "device", "rw", "total (us)", "count", "avg (us)")
 foreach ([dev,rw] in etimes - limit 20) {
 printf("%10s %3s %10d %10d %10d\n", dev, rw,
 @sum(etimes[dev,rw]), @count(etimes[dev,rw]), @avg(etimes[dev,rw]))
 }
 delete etimes
}

ioblktime.stp computes the average waiting time for block I/O per device, and prints a list every
10 seconds. As always, you can revise this refresh rate by editing the specified value in probe
timer.s(10), end {.

In some cases, there can be too many outstanding block I/O operations, at which point the script can
exceed the default number of MAXMAPENTRIES. MAXMAPENTRIES is the maximum number of rows
in an array if the array size is not specified explicitly when declared. If the script exceeds the default
MAXMAPENTRIES value of 2048, run the script again with the stap option -DMAXMAPENTRIES=10000.

Example 5.12. ioblktime.stp Sample Output

 device rw total (us) count avg (us)
 sda W 9659 6 1609
 dm-0 W 20278 6 3379
 dm-0 R 20524 5 4104
 sda R 19277 5 3855

55

Chapter 5. Useful SystemTap Scripts

Example 5.12, “ioblktime.stp Sample Output” displays the device name, operations performed (rw), total
wait time of all operations (total(us)), number of operations (count), and average wait time for all
those operations (avg (us)). The times tallied by the script are in microseconds.

5.3. Profiling
The following sections showcase scripts that profile kernel activity by monitoring function calls.

5.3.1. Counting Function Calls Made

This section describes how to identify how many times the system called a specific kernel function in a 30-
second sample. Depending on the use of wildcards, you can also use this script to target multiple kernel
functions.

functioncallcount.stp

#! /usr/bin/env stap
The following line command will probe all the functions
in kernel's memory management code:
#
stap functioncallcount.stp "*@mm/*.c"

probe kernel.function(@1).call { # probe functions listed on commandline
 called[ppfunc()] <<< 1 # add a count efficiently
}

global called

probe end {
 foreach (fn in called-) # Sort by call count (in decreasing order)
 # (fn+ in called) # Sort by function name
 printf("%s %d\n", fn, @count(called[fn]))
 exit()
}

functioncallcount.stp takes the targeted kernel function as an argument. The argument supports wildcards,
which enables you to target multiple kernel functions up to a certain extent.

The output of functioncallcount.stp contains the name of the function called and how many times it was
called during the sample time (in alphabetical order). Example 5.13, “functioncallcount.stp Sample Output”
contains an excerpt from the output of stap functioncallcount.stp "*@mm/*.c":

Example 5.13. functioncallcount.stp Sample Output

[...]
__vma_link 97
__vma_link_file 66
__vma_link_list 97
__vma_link_rb 97
__xchg 103
add_page_to_active_list 102
add_page_to_inactive_list 19

56

Call Graph Tracing

add_to_page_cache 19
add_to_page_cache_lru 7
all_vm_events 6
alloc_pages_node 4630
alloc_slabmgmt 67
anon_vma_alloc 62
anon_vma_free 62
anon_vma_lock 66
anon_vma_prepare 98
anon_vma_unlink 97
anon_vma_unlock 66
arch_get_unmapped_area_topdown 94
arch_get_unmapped_exec_area 3
arch_unmap_area_topdown 97
atomic_add 2
atomic_add_negative 97
atomic_dec_and_test 5153
atomic_inc 470
atomic_inc_and_test 1
[...]

5.3.2. Call Graph Tracing

This section describes how to trace incoming and outgoing function calls.

para-callgraph.stp

#! /usr/bin/env stap

function trace(entry_p, extra) {
 %($# > 1 %? if (tid() in trace) %)
 printf("%s%s%s %s\n",
 thread_indent (entry_p),
 (entry_p>0?"->":"<-"),
 ppfunc (),
 extra)
}

%($# > 1 %?
global trace
probe $2.call {
 trace[tid()] = 1
}
probe $2.return {
 delete trace[tid()]
}
%)

probe $1.call { trace(1, $$parms) }
probe $1.return { trace(-1, $$return) }

para-callgraph.stp takes two command-line arguments:

57

Chapter 5. Useful SystemTap Scripts

• The function/s whose entry/exit call you'd like to trace ($1).

• A second optional trigger function ($2), which enables or disables tracing on a per-thread basis. Tracing
in each thread will continue as long as the trigger function has not exited yet.

para-callgraph.stp uses thread_indent(); as such, its output contains the timestamp, process
name, and thread ID of $1 (that is, the probe function you are tracing). For more information about
thread_indent(), refer to its entry in SystemTap Functions.

The following example contains an excerpt from the output for stap para-callgraph.stp
'kernel.function("*@fs/*.c")' 'kernel.function("sys_read")':

Example 5.14. para-callgraph.stp Sample Output

[...]
 267 gnome-terminal(2921): <-do_sync_read return=0xfffffffffffffff5
 269 gnome-terminal(2921):<-vfs_read return=0xfffffffffffffff5
 0 gnome-terminal(2921):->fput file=0xffff880111eebbc0
 2 gnome-terminal(2921):<-fput
 0 gnome-terminal(2921):->fget_light fd=0x3 fput_needed=0xffff88010544df54
 3 gnome-terminal(2921):<-fget_light return=0xffff8801116ce980
 0 gnome-terminal(2921):->vfs_read file=0xffff8801116ce980 buf=0xc86504 count=0x1000
 pos=0xffff88010544df48
 4 gnome-terminal(2921): ->rw_verify_area read_write=0x0 file=0xffff8801116ce980
 ppos=0xffff88010544df48 count=0x1000
 7 gnome-terminal(2921): <-rw_verify_area return=0x1000
 12 gnome-terminal(2921): ->do_sync_read filp=0xffff8801116ce980 buf=0xc86504 len=0x1000
 ppos=0xffff88010544df48
 15 gnome-terminal(2921): <-do_sync_read return=0xfffffffffffffff5
 18 gnome-terminal(2921):<-vfs_read return=0xfffffffffffffff5
 0 gnome-terminal(2921):->fput file=0xffff8801116ce980

5.3.3. Determining Time Spent in Kernel and User Space

This section illustrates how to determine the amount of time any given thread is spending in either kernel
or user-space.

thread-times.stp

#! /usr/bin/env stap

probe perf.sw.cpu_clock!, timer.profile {
 // NB: To avoid contention on SMP machines, no global scalars/arrays used,
 // only contention-free statistics aggregates.
 tid=tid(); e=execname()
 if (!user_mode())
 kticks[e,tid] <<< 1
 else
 uticks[e,tid] <<< 1
 ticks <<< 1
 tids[e,tid] <<< 1
}

58

Determining Time Spent in Kernel and User Space

global uticks%, kticks%, ticks

global tids%

probe timer.s(5), end {
 allticks = @count(ticks)
 printf ("%16s %5s %7s %7s (of %d ticks)\n",
 "comm", "tid", "%user", "%kernel", allticks)
 foreach ([e,tid] in tids- limit 20) {
 // SystemTap only performs integer arithmetic.
 // To avoid losing precision the decimal point is shifted
 // to the right four places (*100000). Think of this as
 // the original result value x.xxyy becoming xxxyy.0.
 // The integer percentage xxx is obtained
 // by dividing by 100 and the fractional percentage
 // is obtained with a modulo 100 operation.
 uscaled = @count(uticks[e,tid])*10000/allticks
 kscaled = @count(kticks[e,tid])*10000/allticks
 printf ("%16s %5d %3d.%02d%% %3d.%02d%%\n",
 e, tid, uscaled/100, uscaled%100, kscaled/100, kscaled%100)
 }
 printf("\n")

 delete uticks
 delete kticks
 delete ticks
 delete tids
}

thread-times.stp lists the top 20 processes currently taking up CPU time within a 5-second sample,
along with the total number of CPU ticks made during the sample. The output of this script also notes the
percentage of CPU time each process used, as well as whether that time was spent in kernel space or
user space.

Example 5.15, “thread-times.stp Sample Output” contains a 5-second sample of the output for thread-
times.stp:

Example 5.15. thread-times.stp Sample Output

 tid %user %kernel (of 20002 ticks)
 0 0.00% 87.88%
32169 5.24% 0.03%
 9815 3.33% 0.36%
 9859 0.95% 0.00%
 3611 0.56% 0.12%
 9861 0.62% 0.01%
11106 0.37% 0.02%
32167 0.08% 0.08%
 3897 0.01% 0.08%
 3800 0.03% 0.00%
 2886 0.02% 0.00%
 3243 0.00% 0.01%
 3862 0.01% 0.00%
 3782 0.00% 0.00%
21767 0.00% 0.00%
 2522 0.00% 0.00%
 3883 0.00% 0.00%
 3775 0.00% 0.00%

59

Chapter 5. Useful SystemTap Scripts

 3943 0.00% 0.00%
 3873 0.00% 0.00%

5.3.4. Monitoring Polling Applications

This section describes how to identify and monitor which applications are polling. Doing so allows you to
track unnecessary or excessive polling, which can help you pinpoint areas for improvement in terms of
CPU usage and power savings.

timeout.stp

#! /usr/bin/env stap
Copyright (C) 2009-2018 Red Hat, Inc.
Written by Ulrich Drepper <drepper@redhat.com>
Modified by William Cohen <wcohen@redhat.com>

global process, timeout_count, to
global poll_timeout, epoll_timeout, select_timeout, itimer_timeout
global nanosleep_timeout, futex_timeout, signal_timeout

probe syscall.{poll,epoll_wait} {
 if (timeout) to[pid()]=timeout
}

probe syscall.poll.return {
 if (retval == 0 && to[pid()] > 0) {
 poll_timeout[pid()]++
 timeout_count[pid()]++
 process[pid()] = execname()
 delete to[pid()]
 }
}

probe syscall.epoll_wait.return {
 if (retval == 0 && to[pid()] > 0) {
 epoll_timeout[pid()]++
 timeout_count[pid()]++
 process[pid()] = execname()
 delete to[pid()]
 }
}

probe syscall.select.return {
 if (retval == 0) {
 select_timeout[pid()]++
 timeout_count[pid()]++
 process[pid()] = execname()
 }
}

probe syscall.futex.return {
 if (errno_str(retval) == "ETIMEDOUT") {
 futex_timeout[pid()]++
 timeout_count[pid()]++
 process[pid()] = execname()
 }
}

60

Monitoring Polling Applications

probe syscall.nanosleep.return {
 if (retval == 0) {
 nanosleep_timeout[pid()]++
 timeout_count[pid()]++
 process[pid()] = execname()
 }
}

probe kernel.function("it_real_fn") {
 itimer_timeout[pid()]++
 timeout_count[pid()]++
 process[pid()] = execname()
}

probe syscall.rt_sigtimedwait.return {
 if (errno_str(retval) == "EAGAIN") {
 signal_timeout[pid()]++
 timeout_count[pid()]++
 process[pid()] = execname()
 }
}

probe syscall.exit {
 if (pid() in process) {
 delete process[pid()]
 delete timeout_count[pid()]
 delete poll_timeout[pid()]
 delete epoll_timeout[pid()]
 delete select_timeout[pid()]
 delete itimer_timeout[pid()]
 delete futex_timeout[pid()]
 delete nanosleep_timeout[pid()]
 delete signal_timeout[pid()]
 }
}

probe timer.s(1) {
 ansi_clear_screen()
 printf (" pid | poll select epoll itimer futex nanosle signal| process\n")
 foreach (p in timeout_count- limit 20) {
 printf ("%5d |%7d %7d %7d %7d %7d %7d %7d| %-.38s\n", p,
 poll_timeout[p], select_timeout[p],
 epoll_timeout[p], itimer_timeout[p],
 futex_timeout[p], nanosleep_timeout[p],
 signal_timeout[p], process[p])
 }
}

global prom_arr

probe prometheus {
 foreach (p in timeout_count- limit 20) {
 prom_arr[poll_timeout[p], select_timeout[p],
 epoll_timeout[p], itimer_timeout[p],
 futex_timeout[p], nanosleep_timeout[p],
 signal_timeout[p]] = process[p]
 }

 @prometheus_dump_array7(prom_arr, "process_timeouts", "poll_timeout", "select_timeout",
 "epoll_timeout", "itimer_timeout",
 "futex_timeout", "nanosleep_timeout",

61

Chapter 5. Useful SystemTap Scripts

 "signal_timeout")
 delete prom_arr
}

timeout.stp tracks how many times each of the following system calls completed due to time expiring
rather than due to an actual event occurring:

• poll

• select

• epoll

• itimer

• futex

• nanosleep

• signal

Example 5.16. timeout.stp Sample Output

 uid | poll select epoll itimer futex nanosle signal| process
28937 | 148793 0 0 4727 37288 0 0| firefox
22945 | 0 56949 0 1 0 0 0| scim-bridge
 0 | 0 0 0 36414 0 0 0| swapper
 4275 | 23140 0 0 1 0 0 0| mixer_applet2
 4191 | 0 14405 0 0 0 0 0| scim-launcher
22941 | 7908 1 0 62 0 0 0| gnome-terminal
 4261 | 0 0 0 2 0 7622 0| escd
 3695 | 0 0 0 0 0 7622 0| gdm-binary
 3483 | 0 7206 0 0 0 0 0| dhcdbd
 4189 | 6916 0 0 2 0 0 0| scim-panel-gtk
 1863 | 5767 0 0 0 0 0 0| iscsid
 2562 | 0 2881 0 1 0 1438 0| pcscd
 4257 | 4255 0 0 1 0 0 0| gnome-power-man
 4278 | 3876 0 0 60 0 0 0| multiload-apple
 4083 | 0 1331 0 1728 0 0 0| Xorg
 3921 | 1603 0 0 0 0 0 0| gam_server
 4248 | 1591 0 0 0 0 0 0| nm-applet
 3165 | 0 1441 0 0 0 0 0| xterm
29548 | 0 1440 0 0 0 0 0| httpd
 1862 | 0 0 0 0 0 1438 0| iscsid

You can increase the sample time by editing the second probe (timer.s(1)). The output of timeout.stp
contains the name and UID of the top 20 polling applications, along with how many times each application
performed each polling system call (over time). Example 5.16, “timeout.stp Sample Output” contains an
excerpt of the script. In this particular example firefox is doing an excessive amount of polling due to a
plugin module.

62

Tracking Most Frequently Used System Calls

5.3.5. Tracking Most Frequently Used System Calls

timeout.stp from Section 5.3.4, “Monitoring Polling Applications” helps you identify which applications
are polling by examining a small subset of system calls (poll, select, epoll, itimer, futex,
nanosleep, and signal). However, in some systems, an excessive number of system calls outside that
small subset might be responsible for time spent in the kernel. If you suspect that an application is using
system calls excessively, you need to identify the most frequently used system calls on the system. To do
this, use topsys.stp.

topsys.stp

#! /usr/bin/env stap
#
This script continuously lists the top 20 systemcalls in the interval
5 seconds
#

global syscalls_count

probe syscall_any {
 syscalls_count[name] <<< 1
}

function print_systop () {
 printf ("%25s %10s\n", "SYSCALL", "COUNT")
 foreach (syscall in syscalls_count- limit 20) {
 printf("%25s %10d\n", syscall, @count(syscalls_count[syscall]))
 }
 delete syscalls_count
}

probe timer.s(5) {
 print_systop ()
 printf("--\n")
}

global prom_arr

probe prometheus {
 foreach (syscall in syscalls_count- limit 20)
 prom_arr[syscall] = @count(syscalls_count[syscall])

 @prometheus_dump_array1(prom_arr, "top_syscall_count", "name")
 delete prom_arr
}

topsys.stp lists the top 20 system calls used by the system per 5-second interval. It also lists how many
times each system call was used during that period. Refer to Example 5.17, “topsys.stp Sample Output”
for a sample output.

Example 5.17. topsys.stp Sample Output

--

63

Chapter 5. Useful SystemTap Scripts

 SYSCALL COUNT
 gettimeofday 1857
 read 1821
 ioctl 1568
 poll 1033
 close 638
 open 503
 select 455
 write 391
 writev 335
 futex 303
 recvmsg 251
 socket 137
 clock_gettime 124
 rt_sigprocmask 121
 sendto 120
 setitimer 106
 stat 90
 time 81
 sigreturn 72
 fstat 66
--

5.3.6. Tracking System Call Volume Per Process

This section illustrates how to determine which processes are performing the highest volume of system
calls. In previous sections, we've described how to monitor the top system calls used by the system over
time (Section 5.3.5, “Tracking Most Frequently Used System Calls”). We've also described how to identify
which applications use a specific set of "polling suspect" system calls the most (Section 5.3.4, “Monitoring
Polling Applications”). Monitoring the volume of system calls made by each process provides more data in
investigating your system for polling processes and other resource hogs.

syscalls_by_proc.stp

#! /usr/bin/env stap

Copyright (C) 2006 IBM Corp.
Copyright (C) 2018-2019 Red Hat, Inc.
#
This file is part of systemtap, and is free software. You can
redistribute it and/or modify it under the terms of the GNU General
Public License (GPL); either version 2, or (at your option) any
later version.

#
Print the system call count by process name in descending order.
#

global syscalls

probe begin {
 print ("Collecting data... Type Ctrl-C to exit and display results\n")
}

probe syscall_any {
 syscalls[execname()] <<< 1

64

Tracking System Call Volume Per Process

}

probe end {
 printf ("%-10s %-s\n", "#SysCalls", "Process Name")
 foreach (proc in syscalls-)
 printf("%-10d %-s\n", @sum(syscalls[proc]), proc)
}

syscalls_by_proc.stp lists the top 20 processes performing the highest number of system calls. It also
lists how many system calls each process performed during the time period. Refer to Example 5.18,
“topsys.stp Sample Output” for a sample output.

Example 5.18. topsys.stp Sample Output

Collecting data... Type Ctrl-C to exit and display results
#SysCalls Process Name
1577 multiload-apple
692 synergyc
408 pcscd
376 mixer_applet2
299 gnome-terminal
293 Xorg
206 scim-panel-gtk
95 gnome-power-man
90 artsd
85 dhcdbd
84 scim-bridge
78 gnome-screensav
66 scim-launcher
[...]

To display the process IDs instead of the process names, use the following script instead.

syscalls_by_pid.stp

#! /usr/bin/env stap

Copyright (C) 2006 IBM Corp.
#
This file is part of systemtap, and is free software. You can
redistribute it and/or modify it under the terms of the GNU General
Public License (GPL); either version 2, or (at your option) any
later version.

#
Print the system call count by process ID in descending order.
#

global syscalls

probe begin {
 print ("Collecting data... Type Ctrl-C to exit and display results\n")
}

probe syscall_any {
 syscalls[pid()] <<< 1

65

Chapter 5. Useful SystemTap Scripts

}

probe end {
 printf ("%-10s %-s\n", "#SysCalls", "PID")
 foreach (pid in syscalls-)
 printf("%-10d %-d\n", @sum(syscalls[pid]), pid)
}

As indicated in the output, you need to manually exit the script in order to display the results. You can add
a timed expiration to either script by simply adding a timer.s() probe; for example, to instruct the script
to expire after 5 seconds, add the following probe to the script:

probe timer.s(5)
{
 exit()
}

5.4. Identifying Contended User-Space Locks

This section describes how to identify contended user-space locks throughout the system within a specific
time period. The ability to identify contended user-space locks can help you investigate poor program
performance that you suspect may be caused by futex contentions.

Simply put, futex contention occurs when multiple processes are trying to access the same lock variable
at the same time. This can result in a poor performance because the lock serializes execution; one
process obtains the lock while the other processes must wait for the lock variable to become available
again.

The futexes.stp script probes the futex system call to show lock contention.

futexes.stp

#! /usr/bin/env stap

This script tries to identify contended user-space locks by hooking
into the futex system call.

global FUTEX_WAIT = 0 /*, FUTEX_WAKE = 1 */
global FUTEX_PRIVATE_FLAG = 128 /* linux 2.6.22+ */
global FUTEX_CLOCK_REALTIME = 256 /* linux 2.6.29+ */

global lock_waits # long-lived stats on (tid,lock) blockage elapsed time
global process_names # long-lived pid-to-execname mapping

global entry_times%, uaddrs%

probe syscall.futex {
 if ((op & ~(FUTEX_PRIVATE_FLAG|FUTEX_CLOCK_REALTIME)) != FUTEX_WAIT) next
 entry_times[tid()] = gettimeofday_us()
 uaddrs[tid()] = futex_uaddr
}

66

Identifying Contended User-Space Locks

probe syscall.futex.return {
 if (!(entry_times[tid()])) next
 elapsed = gettimeofday_us() - entry_times[tid()]
 lock_waits[pid(), uaddrs[tid()]] <<< elapsed
 delete entry_times[tid()]
 delete uaddrs[tid()]
 if (!(pid() in process_names))
 process_names[pid()] = execname()
}

probe end {
 foreach ([pid+, lock] in lock_waits)
 printf ("%s[%d] lock %p contended %d times, %d avg us\n",
 process_names[pid], pid, lock, @count(lock_waits[pid,lock]),
 @avg(lock_waits[pid,lock]))
}

futexes.stp needs to be manually stopped; upon exit, it prints the following information:

• Name and ID of the process responsible for a contention

• The location of the contested lock variable

• How many times the lock variable was contended

• Average time of contention throughout the probe

Example 5.19, “futexes.stp Sample Output” contains an excerpt from the output of futexes.stp upon exiting
the script (after approximately 20 seconds).

Example 5.19. futexes.stp Sample Output

[...]
automount[2825] lock 0x00bc7784 contended 18 times, 999931 avg us
synergyc[3686] lock 0x0861e96c contended 192 times, 101991 avg us
synergyc[3758] lock 0x08d98744 contended 192 times, 101990 avg us
synergyc[3938] lock 0x0982a8b4 contended 192 times, 101997 avg us
[...]

67

68

Chapter 6.

Understanding SystemTap Errors
This chapter explains the most common errors you may encounter while using SystemTap.

6.1. Parse and Semantic Errors

Parse and semantic errors occur while SystemTap attempts to parse and translate the script into C, before
converting it into a kernel module. For example, type errors result from operations that assign invalid
values to variables or arrays.

parse error: expected foo, saw bar

The script contains a grammatical or typographical error. SystemTap detected the type of the construct
that is incorrect, given the context of the probe.

For example, the following invalid SystemTap script is missing its probe handlers:

probe vfs.read
probe vfs.write

An attempt to run this SystemTap script fails with the following error message showing that the parser
expects something other than the probe keyword in column 1 of line 2:

parse error: expected one of '. , (? ! { = +='
 saw: keyword at perror.stp:2:1
1 parse error(s).

parse error: embedded code in unprivileged script

The script contains unsafe embedded C code, that is, blocks of code surrounded by %{ and %}.
SystemTap allows you to embed C code in a script, which is useful if there are no tapsets to suit your
purposes. However, embedded C constructs are not safe and SystemTap reports this error to warn you if
such constructs appear in the script.

If you are sure that any similar constructs in the script are safe and you are a member of the stapdev
group (or have root privileges), run the script in "guru" mode by using the -g option:

stap -g script

semantic error: type mismatch for identifier 'foo' ... string vs. long

The function foo in the script used the wrong type (such as %s or %d). In the following example, the format
specifier should be %s and not %d, because the execname() function returns a string:

probe syscall.open

69

Chapter 6. Understanding SystemTap Errors

{
 printf ("%d(%d) open\n", execname(), pid())
}

semantic error: unresolved type for identifier 'foo'

The identifier (variable) was used, but no type (integer or string) could be determined. This occurs,
for instance, if you use a variable in a printf statement while the script never assigns a value to the
variable.

semantic error: Expecting symbol or array index expression

SystemTap could not assign a value to a variable or to a location in an array. The destination for the
assignment is not a valid destination. The following example code would generate this error:

probe begin { printf("x") = 1 }

while searching for arity N function, semantic error: unresolved
function call

A function call or array index expression in the script used an invalid number of arguments or parameters.
In SystemTap, arity can either refer to the number of indices for an array, or the number of parameters to
a function.

semantic error: array locals not supported, missing global
declaration?

The script used an array operation without declaring the array as a global variable (global variables can
be declared after their use in SystemTap scripts). Similar messages appear if an array is used, but with
inconsistent arities.

semantic error: variable 'foo' modified during 'foreach' iteration

The array foo is being modified (being assigned to or deleted from) within an active foreach loop. This
error also displays if an operation within the script performs a function call within the foreach loop.

semantic error: probe point mismatch at position N, while resolving
probe point foo

SystemTap did not understand what the event or SystemTap function foo refers to. This usually means
that SystemTap could not find a match for foo in the tapset library. N refers to the line and column of the
error.

70

semantic error: no match for probe point, while resolving probe point foo

semantic error: no match for probe point, while resolving probe point
foo

SystemTap could not resolve the events or handler function foo for a variety of reasons. This error occurs
when the script contains the event kernel.function("something"), and something does not exist.
In some cases, the error could also mean the script contains an invalid kernel file name or source line
number.

semantic error: unresolved target-symbol expression

A handler in the script references a target variable, but the value of the variable could not be resolved.
This error could also mean that a handler is referencing a target variable that is not valid in the context
when it was referenced. This may be a result of compiler optimization of the generated code.

semantic error: libdwfl failure

There was a problem processing the debugging information. In most cases, this error results from the
installation of a kernel-debuginfo package whose version does not match the probed kernel exactly. The
installed kernel-debuginfo package itself may have some consistency or correctness problems.

semantic error: cannot find foo debuginfo
SystemTap could not find a suitable kernel-debuginfo package.

6.2. Runtime Errors and Warnings

Runtime errors and warnings occur when the SystemTap instrumentation has been installed and is
collecting data on the system.

WARNING: Number of errors: N, skipped probes: M

Errors and/or skipped probes occurred during this run. Both N and M are the counts of the number
of probes that were not executed due to conditions such as too much time required to execute event
handlers over an interval of time.

division by 0

The script code performed an invalid division.

aggregate element not found

A statistics extractor function other than @count was invoked on an aggregate that has not had any
values accumulated yet. This is similar to a division by zero.

71

Chapter 6. Understanding SystemTap Errors

aggregation overflow

An array containing aggregate values contains too many distinct key pairs at this time.

MAXNESTING exceeded

Too many levels of function call nesting were attempted. The default nesting of function calls allowed is
10.

MAXACTION exceeded

The probe handler attempted to execute too many statements in the probe handler. The default number of
actions allowed in a probe handler is 1000.

kernel/user string copy fault at ADDR

The probe handler attempted to copy a string from kernel or user space at an invalid address (ADDR).

pointer dereference fault

There was a fault encountered during a pointer dereference operation such as a target variable
evaluation.

72

Chapter 7.

References
This chapter enumerates other references for more information about SystemTap. Refer to these sources
in the course of writing advanced probes and tapsets.

SystemTap Wiki
The SystemTap Wiki is a collection of links and articles related to the deployment, usage, and
development of SystemTap. You can find it at http://sourceware.org/systemtap/wiki/HomePage.

SystemTap Tutorial
Much of the content in this book comes from the SystemTap Tutorial. The SystemTap Tutorial is a
more appropriate reference for users with intermediate to advanced knowledge of C++ and kernel
development, and you can find it at http://sourceware.org/systemtap/tutorial/.

man stapprobes
The stapprobes(3stap) man page enumerates a variety of probe points supported by SystemTap,
along with additional aliases defined by the SystemTap tapset library. The bottom part of the
man page includes a list of other man pages enumerating similar probe points for specific system
components, such as tapset::scsi, tapset::kprocess, tapset::signal, and so on.

man stapfuncs
The stapfuncs(3stap) man page enumerates numerous functions supported by the SystemTap tapset
library, along with the prescribed syntax for each of them. Note, however, that it does not provide a
complete list of all supported functions; there are more undocumented functions available.

SystemTap Tapset Reference Manual
The SystemTap Tapset Reference Manual describes the individual predefined functions and probe
points of the tapsets in greater detail. You can find it at http://sourceware.org/systemtap/tapsets/.

SystemTap Language Reference
The SystemTap Language Reference is a comprehensive reference of SystemTap's language
constructs and syntax. It is recommended for users with a rudimentary to intermediate knowledge of
C++ and other similar programming languages, and is available to all users at http://sourceware.org/
systemtap/langref/.

Tapset Developers Guide
Once you have sufficient proficiency in writing SystemTap scripts, you can try to write your own
tapsets. The Tapset Developers Guide describes how to add functions to your tapset library.

Test Suite
The systemtap-testsuite package allows you to test the entire SystemTap toolchain without having
to build it from source code. In addition, it also contains numerous examples of SystemTap scripts to
study and test; some of these scripts are also documented in Chapter 5, Useful SystemTap Scripts.

By default, the example scripts included in systemtap-testsuite are located in the /usr/share/
systemtap/testsuite/systemtap.examples/ directory.

73

http://sourceware.org/systemtap/wiki/HomePage
http://sourceware.org/systemtap/tutorial/
http://sourceware.org/systemtap/tapsets/
http://sourceware.org/systemtap/langref/
http://sourceware.org/systemtap/langref/

74

Appendix A. Revision History
Revision 2.0-1 Mon Jul 20 2009 Don Domingo ddomingo@redhat.com

includes 5.4 minor updates and additional script "dropwatch.stp"

Revision 1.0-1 Wed Jun 17 2009 Don Domingo ddomingo@redhat.com

Building+pushing to RHEL

75

mailto:ddomingo@redhat.com
mailto:ddomingo@redhat.com

76

Index

Symbols
$count

sample usage
local variables, 49

$return
sample usage

local variables, 47, 51
@avg (integer extractor)

computing for statistical aggregates
array operations, 34

@count (integer extractor)
computing for statistical aggregates

array operations, 33
@max (integer extractor)

computing for statistical aggregates
array operations, 33

@min (integer extractor)
computing for statistical aggregates

array operations, 33
@sum (integer extractor)

computing for statistical aggregates
array operations, 33

A
adding values to statistical aggregates

computing for statistical aggregates
array operations, 33

advantages of cross-instrumentation, 6
aggregate element not found

runtime errors/warnings
understainding SystemTap errors, 71

aggregates (statistical)
array operations, 32

aggregation overflow
runtime errors/warnings

understainding SystemTap errors, 72
algebraic formulas using arrays

reading values from arrays
array operations, 27

architecture notation, determining, 7
architecture of SystemTap, 11
array locals not supported

parse/semantics error
understanding SystemTap errors, 70

array operations
assigning associated values, 27

associating timestamps to process names, 27

associative arrays, 26
clearing arrays/array elements, 29

delete operator, 29
multiple array operations within the same
probe, 31
virtual file system reads (non-cumulative),
tallying, 30

computing for statistical aggregates, 32
@avg (integer extractor), 34
@count (integer extractor), 33
@max (integer extractor), 33
@min (integer extractor), 33
@sum (integer extractor), 33
adding values to statistical aggregates, 33
count (operator), 33
extracting data collected by statistical
aggregates, 33

conditional statements, using arrays in, 31
testing for array membership, 32

deleting arrays and array elements, 29
incrementing associated values, 28

tallying virtual file system reads (VFS reads),
28

multiple elements in an array, 28
processing multiple elements in an array, 28

cumulative virtual file system reads, tallying,
29
foreach, 28
iterations, processing elements in an array as,
28
limiting the output of foreach, 29
ordering the output of foreach, 29

reading values from arrays, 27
computing for timestamp deltas, 27
empty unique keys, 28
using arrays in simple computations, 27

arrays, 26
(see also associative arrays)

assigning associated values
array operations, 27

associating timestamps to process names, 27
associating timestamps to process names

array operations, 27
associated values

introduction
arrays, 26

associating timestamps to process names
assigning associated values

array operations, 27
associative arrays

77

Index

introduction, 26
associated values, 26
example, 26
index expression, 26
key pairs, 26
syntax, 26
unique keys, 26

asynchronous events
Events, 14

B
begin

Events, 14
building instrumentation modules from SystemTap
scripts, 5
building kernel modules from SystemTap scripts, 5

C
call graph tracing

examples of SystemTap scripts, 57
capabilities of SystemTap

Introduction, 1
changes to file attributes, monitoring

examples of SystemTap scripts, 54
clearing arrays/array elements

array operations, 29
delete operator, 29
multiple array operations within the same
probe, 31
virtual file system reads (non-cumulative),
tallying, 30

command-line arguments
SystemTap handler constructs

handlers, 25
compiling instrumentation/kernel modules from
SystemTap scripts, 5
components

SystemTap scripts
introduction, 12

computing for statistical aggregates
array operations, 32

@avg (integer extractor), 34
@count (integer extractor), 33
@max (integer extractor), 33
@min (integer extractor), 33
@sum (integer extractor), 33
adding values to statistical aggregates, 33
count (operator), 33
extracting data collected by statistical
aggregates, 33

computing for timestamp deltas
reading values from arrays

array operations, 27
conditional operators

conditional statements
handlers, 25

conditional statements, using arrays in
array operations, 31

testing for array membership, 32
CONFIG_HZ, computing for, 20
contended user-space locks (futex contentions),
identifying

examples of SystemTap scripts, 66
copy fault

runtime errors/warnings
understainding SystemTap errors, 72

count operator
computing for statistical aggregates

array (operator), 33
counting function calls

examples of SystemTap scripts, 56
CPU ticks

examples of SystemTap scripts, 59
cpu()

functions, 17
cross-compiling, 5
cross-instrumentation

advantages of, 6
building kernel modules from SystemTap scripts,
5
configuration

host system and target system, 6
generating instrumentation from SystemTap
scripts, 5
host system, 6
instrumentation module, 6
target kernel, 6
target system, 6

ctime()
functions, 17

ctime(), example of usage
script examples, 47

cumulative I/O, tracking
examples of SystemTap scripts, 50

cumulative virtual file system reads, tallying
processing multiple elements in an array

array operations, 29

D
delete operator

78

clearing arrays/array elements
array operations, 29

determining architecture notation, 7
determining the kernel version, 4
determining time spent in kernel and user space

examples of SystemTap scripts, 58
device I/O, monitoring

examples of SystemTap scripts, 52
device number of a file (integer format)

examples of SystemTap scripts, 53
disk I/O traffic, summarizing

script examples, 45
division by 0

runtime errors/warnings
understainding SystemTap errors, 71

documentation goals
Introduction, 1

E
embedded code in unprivileged script

parse/semantics error
understanding SystemTap errors, 69

empty unique keys
reading values from arrays

array operations, 28
end

Events, 15
errors

parse/semantics error, 69
embedded code in unprivileged script, 69
expected symbol/array index expression, 70
grammatical/typographical script error, 69
guru mode, 69
invalid values to variables/arrays, 69
libdwfl failure, 71
no match for probe point, 71
non-global arrays, 70
probe mismatch, 70
type mismatch for identifier, 69
unresolved function call, 70
unresolved target-symbol expression, 71
unresolved type for identifier, 70
variable modified during 'foreach', 70

runtime errors/warnings, 71
aggregate element not found, 71
aggregation overflow, 72
copy fault, 72
division by 0, 71
MAXACTION exceeded, 72
MAXNESTING exceeded, 72

number of errors: N, skipped probes: M, 71
pointer dereference fault, 72

event types
Understanding How SystemTap Works, 11

Events
asynchronous events, 14
begin, 14
end, 15
examples of synchronous and asynchronous
events, 13
introduction, 13
kernel.function("function"), 13
kernel.trace("tracepoint"), 14
module("module"), 14
synchronous events, 13
syscall.system_call, 13
timer events, 15
user-space, 35
vfs.file_operation, 13
wildcards, 14

events and handlers, 11
events wildcards, 14
example

introduction
arrays, 26

example of multiple command-line arguments
examples of SystemTap scripts, 57

examples of synchronous and asynchronous
events

Events, 13
examples of SystemTap scripts, 39

call graph tracing, 57
CPU ticks, 59
ctime(), example of usage, 47
determining time spent in kernel and user space,
58
file device number (integer format), 53
futex (lock) contentions, 66
futex system call, 66
identifying contended user-space locks (futex
contentions), 66
if/else conditionals, alternative syntax, 40
inode number, 53
monitoring changes to file attributes, 54
monitoring device I/O, 52
monitoring I/O block time, 54
monitoring I/O time, 48
monitoring incoming TCP connections, 42
monitoring polling applications, 60
monitoring reads and writes to a file, 53

79

Index

monitoring system calls, 63
monitoring system calls (volume per process),
64
monitoring TCP packets, 42
multiple command-line arguments, example of,
57
net/socket.c, tracing functions from, 41
network profiling, 39, 44
stat -c, determining file device number (integer
format), 53
stat -c, determining whole device number, 52
summarizing disk I/O traffic, 45
tallying function calls, 56
thread_indent(), sample usage, 58
timer.ms(), sample usage, 56
timer.s(), sample usage, 62, 63
tracing functions called in network socket code,
41
tracking cumulative I/O, 50
trigger function, 57
usrdev2kerndev(), 52
whole device number (usage as a command-line
argument), 52

exceeded MAXACTION
runtime errors/warnings

understainding SystemTap errors, 72
exceeded MAXNESTING

runtime errors/warnings
understainding SystemTap errors, 72

exit()
functions, 16

expected symbol/array index expression
parse/semantics error

understanding SystemTap errors, 70
extracting data collected by statistical aggregates

computing for statistical aggregates
array operations, 33

F
feedback

contact information for this manual, vii
file attributes, monitoring changes to

examples of SystemTap scripts, 54
file device number (integer format)

examples of SystemTap scripts, 53
file reads/writes, monitoring

examples of SystemTap scripts, 53
flight recorder mode, 9

file mode, 10
in-memory mode, 9

for loops
conditional statements

handlers, 25
foreach

processing multiple elements in an array
array operations, 28

format
introduction

arrays, 26
format and syntax

printf(), 16
SystemTap handler constructs

handlers, 19
SystemTap scripts

introduction, 12
format specifiers

printf(), 16
format strings

printf(), 16
function call (unresolved)

parse/semantics error
understanding SystemTap errors, 70

function calls (incoming/outgoing), tracing
examples of SystemTap scripts, 57

function calls, tallying
examples of SystemTap scripts, 56

functions, 17
cpu(), 17
ctime(), 17
gettimeofday_s(), 17
pp(), 17
SystemTap scripts

introduction, 12
target(), 19
thread_indent(), 17
tid(), 17, 17
uid(), 17

functions (used in handlers)
exit(), 16

functions called in network socket code, tracing
examples of SystemTap scripts, 41

futex (lock) contentions
examples of SystemTap scripts, 66

futex contention, definition
examples of SystemTap scripts, 66

futex contentions, identifying
examples of SystemTap scripts, 66

futex system call
examples of SystemTap scripts, 66

80

G
gettimeofday_s()

functions, 17
global

SystemTap handler constructs
handlers, 20

goals, documentation
Introduction, 1

grammatical/typographical script error
parse/semantics error

understanding SystemTap errors, 69
guru mode

parse/semantics error
understanding SystemTap errors, 69

H
handler functions, 17
handlers

conditional statements, 24
conditional operators, 25
for loops, 25
if/else, 24
while loops, 24

introduction, 15
SystemTap handler constructs, 19

command-line arguments, 25
global, 20
syntax and format, 19
variable notations, 25
variables, 19

target variables, 20
handlers and events, 11

SystemTap scripts
introduction, 12

heaviest disk reads/writes, identifying
script examples, 45

host system
cross-instrumentation, 6

host system and target system
cross-instrumentation

configuration, 6

I
I/O block time, monitoring

examples of SystemTap scripts, 54
I/O monitoring (by device)

examples of SystemTap scripts, 52
I/O time, monitoring

examples of SystemTap scripts, 48

I/O traffic, summarizing
script examples, 45

identifier type mismatch
parse/semantics error

understanding SystemTap errors, 69
identifying contended user-space locks (futex
contentions)

examples of SystemTap scripts, 66
identifying heaviest disk reads/writes

script examples, 45
if/else

conditional statements
handlers, 24

if/else conditionals, alternative syntax
examples of SystemTap scripts, 40

if/else statements, using arrays in
array operations, 31

incoming TCP connections, monitoring
examples of SystemTap scripts, 42

incoming/outgoing function calls, tracing
examples of SystemTap scripts, 57

incrementing associated values
array operations, 28

tallying virtual file system reads (VFS reads),
28

index expression
introduction

arrays, 26
initial testing, 5
inode number

examples of SystemTap scripts, 53
Installation

initial testing, 5
kernel information packages, 3
kernel version, determining the, 4
required packages, 3
Setup and Installation, 3
systemtap package, 3
systemtap-runtime package, 3

instrumentation module
cross-instrumentation, 6

instrumentation modules from SystemTap scripts,
building, 5
integer extractors

computing for statistical aggregates
array operations, 33

Introduction
capabilities of SystemTap, 1
documentation goals, 1
goals, documentation, 1

81

Index

limitations of SystemTap, 1
performance monitoring, 1

invalid division
runtime errors/warnings

understainding SystemTap errors, 71
invalid values to variables/arrays

parse/semantics error
understanding SystemTap errors, 69

iterations, processing elements in an array as
processing multiple elements in an array

array operations, 28

K
kernel and user space, determining time spent in

examples of SystemTap scripts, 58
kernel information packages, 3
kernel modules from SystemTap scripts, building, 5
kernel version, determining the, 4
kernel.function("function")

Events, 13
kernel.trace("tracepoint")

Events, 14
key pairs

introduction
arrays, 26

L
libdwfl failure

parse/semantics error
understanding SystemTap errors, 71

limitations of SystemTap
Introduction, 1

limiting the output of foreach
processing multiple elements in an array

array operations, 29
local variables

name, 19
sample usage

$count, 49
$return, 47, 51

M
MAXACTION exceeded

runtime errors/warnings
understainding SystemTap errors, 72

MAXNESTING exceeded
runtime errors/warnings

understainding SystemTap errors, 72
membership (in array), testing for

conditional statements, using arrays in

array operations, 32
module("module")

Events, 14
monitoring changes to file attributes

examples of SystemTap scripts, 54
monitoring cumulative I/O

examples of SystemTap scripts, 50
monitoring device I/O

examples of SystemTap scripts, 52
monitoring I/O block time

examples of SystemTap scripts, 54
monitoring I/O time

examples of SystemTap scripts, 48
monitoring incoming TCP connections

examples of SystemTap scripts, 42
monitoring polling applications

examples of SystemTap scripts, 60
monitoring reads and writes to a file

examples of SystemTap scripts, 53
monitoring system calls

examples of SystemTap scripts, 63
monitoring system calls (volume per process)

examples of SystemTap scripts, 64
monitoring TCP packets

examples of SystemTap scripts, 42
multiple array operations within the same probe

clearing arrays/array elements
array operations, 31

multiple command-line arguments, example of
examples of SystemTap scripts, 57

multiple elements in an array
array operations, 28

N
name

local variables, 19
net/socket.c, tracing functions from

examples of SystemTap scripts, 41
network profiling

examples of SystemTap scripts, 39, 44
network socket code, tracing functions called in

examples of SystemTap scripts, 41
network traffic, monitoring

examples of SystemTap scripts, 39, 44
no match for probe point

parse/semantics error
understanding SystemTap errors, 71

non-global arrays
parse/semantics error

understanding SystemTap errors, 70

82

number of errors: N, skipped probes: M
runtime errors/warnings

understainding SystemTap errors, 71

O
operations

assigning associated values
associating timestamps to process names, 27

associative arrays, 26
clearing arrays/array elements, 29

delete operator, 29
multiple array operations within the same
probe, 31
virtual file system reads (non-cumulative),
tallying, 30

computing for statistical aggregates, 32
@avg (integer extractor), 34
@count (integer extractor), 33
@max (integer extractor), 33
@min (integer extractor), 33
@sum (integer extractor), 33
adding values to statistical aggregates, 33
count (operator), 33
extracting data collected by statistical
aggregates, 33

conditional statements, using arrays in, 31
testing for array membership, 32

deleting arrays and array elements, 29
incrementing associated values, 28

tallying virtual file system reads (VFS reads),
28

multiple elements in an array, 28
processing multiple elements in an array, 28

cumulative virtual file system reads, tallying,
29
foreach, 28
iterations, processing elements in an array as,
28
limiting the output of foreach, 29
ordering the output of foreach, 29

reading values from arrays, 27
computing for timestamp deltas, 27
empty unique keys, 28
using arrays in simple computations, 27

options, stap
Usage, 8

ordering the output of foreach
processing multiple elements in an array

array operations, 29
overflow of aggregation

runtime errors/warnings
understainding SystemTap errors, 72

P
packages required to run SystemTap, 3
parse/semantics error

understanding SystemTap errors, 69
embedded code in unprivileged script, 69
expected symbol/array index expression, 70
grammatical/typographical script error, 69
guru mode, 69
invalid values to variables/arrays, 69
libdwfl failure, 71
no match for probe point, 71
non-global arrays, 70
probe mismatch, 70
type mismatch for identifier, 69
unresolved function call, 70
unresolved target-symbol expression, 71
unresolved type for identifier, 70
variable modified during 'foreach', 70

performance monitoring
Introduction, 1

pointer dereference fault
runtime errors/warnings

understainding SystemTap errors, 72
polling applications, monitoring

examples of SystemTap scripts, 60
pp()

functions, 17
printf()

format specifiers, 16
format strings, 16, 16
syntax and format, 16

printing I/O activity (cumulative)
examples of SystemTap scripts, 50

printing I/O block time (periodically)
examples of SystemTap scripts, 54

probe mismatch
parse/semantics error

understanding SystemTap errors, 70
probe point (no match for)

parse/semantics error
understanding SystemTap errors, 71

probes
SystemTap scripts

introduction, 12
processing multiple elements in an array

array operations, 28
cumulative virtual file system reads, tallying

83

Index

array operations, 29
foreach

array operations, 28
limiting the output of foreach

array operations, 29
ordering the output of foreach

array operations, 29
profiling the network

examples of SystemTap scripts, 39, 44

R
reading values from arrays

array operations, 27
empty unique keys, 28
using arrays in simple computations, 27

computing for timestamp deltas
array operations, 27

reads/writes to a file, monitoring
examples of SystemTap scripts, 53

required packages, 3
RPMs required to run SystemTap, 3
running scripts from standard input, 8
running SystemTap scripts

Usage, 7
runtime errors/warnings

understainding SystemTap errors, 71
aggregate element not found, 71
aggregation overflow, 72
copy fault, 72
division by 0, 71
MAXACTION exceeded, 72
MAXNESTING exceeded, 72
number of errors: N, skipped probes: M, 71
pointer dereference fault, 72

S
script examples

call graph tracing, 57
CPU ticks, 59
ctime(), example of usage, 47
determining time spent in kernel and user space,
58
file device number (integer format), 53
futex (lock) contentions, 66
futex system call, 66
identifying contended user-space locks (futex
contentions), 66
if/else conditionals, alternative syntax, 40
inode number, 53
monitoring changes to file attributes, 54

monitoring device I/O, 52
monitoring I/O block time, 54
monitoring I/O time, 48
monitoring incoming TCP connections, 42
monitoring polling applications, 60
monitoring reads and writes to a file, 53
monitoring system calls, 63
monitoring system calls (volume per process),
64
monitoring TCP packets, 42
multiple command-line arguments, example of,
57
net/socket.c, tracing functions from, 41
network profiling, 39, 44
stat -c, determining file device number (integer
format), 53
stat -c, determining whole device number, 52
summarizing disk I/O traffic, 45
tallying function calls, 56
thread_indent(), sample usage, 58
timer.ms(), sample usage, 56
timer.s(), sample usage, 62, 63
tracing functions called in network socket code,
41
tracking cumulative I/O, 50
trigger function, 57
usrdev2kerndev(), 52
whole device number (usage as a command-line
argument), 52

scripts
introduction, 11

components, 12
events and handlers, 12
format and syntax, 12
functions, 12
probes, 12
statement blocks, 12

sessions, SystemTap, 11
Setup and Installation, 3
Stack backtrace

user-space, 37
standard input, running scripts from

Usage, 8
stap

Usage, 7
stap options, 8
stapdev

Usage, 7
staprun

Usage, 7

84

stapusr
Usage, 8

stat -c, determining file device number (integer
format)

examples of SystemTap scripts, 53
stat -c, determining whole device number

examples of SystemTap scripts, 52
statement blocks

SystemTap scripts
introduction, 12

statistical aggregates
array operations, 32

summarizing disk I/O traffic
script examples, 45, 45

synchronous events
Events, 13

syntax
introduction

arrays, 26
syntax and format

printf(), 16
SystemTap handler constructs

handlers, 19
SystemTap scripts

introduction, 12
syscall.system_call

Events, 13
system calls volume (per process), monitoring

examples of SystemTap scripts, 64
system calls, monitoring

examples of SystemTap scripts, 63
SystemTap architecture, 11
SystemTap handlers

SystemTap handler constructs, 19
syntax and format, 19

systemtap package, 3
SystemTap script functions, 17
SystemTap scripts

introduction, 11
components, 12
events and handlers, 12
format and syntax, 12
functions, 12
probes, 12
statement blocks, 12

useful examples, 39
SystemTap scripts, how to run, 7
SystemTap sessions, 11
SystemTap statements

conditional statements, 24

conditional operators, 25
for loops, 25
if/else, 24
while loops, 24

SystemTap handler constructs
command-line arguments, 25
global, 20
variable notations, 25
variables, 19

systemtap-runtime package, 3
systemtap-testsuite package

sample scripts, 39

T
tallying function calls

examples of SystemTap scripts, 56
tallying virtual file system reads (VFS reads)

incrementing associated values
array operations, 28

Tapsets
definition of, 34

target kernel
cross-instrumentation, 6

target system
cross-instrumentation, 6

target system and host system
configuration, 6

target variables, 20
pretty printing, 22
typecasting, 23
user-space, 36
variable availability, 23

target()
functions, 19

target-symbol expression, unresolved
parse/semantics error

understanding SystemTap errors, 71
TCP connections (incoming), monitoring

examples of SystemTap scripts, 42
TCP packets, monitoring

examples of SystemTap scripts, 42, 42
testing for array membership

conditional statements, using arrays in
array operations, 32

testing, initial, 5
thread_indent()

functions, 17
thread_indent(), sample usage

examples of SystemTap scripts, 58
tid()

85

Index

functions, 17
time of I/O

examples of SystemTap scripts, 48
time spent in kernel/user space, determining

examples of SystemTap scripts, 58
timer events

Events, 15
timer.ms(), sample usage

examples of SystemTap scripts, 56
timer.s(), sample usage

examples of SystemTap scripts, 62, 63
timestamp deltas, computing for

reading values from arrays
array operations, 27

timestamps, association thereof to process names
assigning associated values

array operations, 27
tracepoint, 14, 44
tracing call graph

examples of SystemTap scripts, 57
tracing functions called in network socket code

examples of SystemTap scripts, 41
tracing incoming/outgoing function calls

examples of SystemTap scripts, 57
tracking cumulative I/O

examples of SystemTap scripts, 50
trigger function

examples of SystemTap scripts, 57
type mismatch for identifier

parse/semantics error
understanding SystemTap errors, 69

typographical script error
parse/semantics error

understanding SystemTap errors, 69

U
uid()

functions, 17
uname -m, 7
uname -r, 4
understainding SystemTap errors

runtime errors/warnings, 71
aggregate element not found, 71
aggregation overflow, 72
copy fault, 72
division by 0, 71
MAXACTION exceeded, 72
MAXNESTING exceeded, 72
number of errors: N, skipped probes: M, 71
pointer dereference fault, 72

Understanding How SystemTap Works, 11
architecture, 11
event types, 11
events and handlers, 11
SystemTap sessions, 11

understanding SystemTap errors
parse/semantics error, 69

embedded code in unprivileged script, 69
expected symbol/array index expression, 70
grammatical/typographical script error, 69
guru mode, 69
invalid values to variables/arrays, 69
libdwfl failure, 71
no match for probe point, 71
non-global arrays, 70
probe mismatch, 70
type mismatch for identifier, 69
unresolved function call, 70
unresolved target-symbol expression, 71
unresolved type for identifier, 70
variable modified during 'foreach', 70

unique keys
introduction

arrays, 26
unprivileged script, embedded code in

parse/semantics error
understanding SystemTap errors, 69

unresolved function call
parse/semantics error

understanding SystemTap errors, 70
unresolved target-symbol expression

parse/semantics error
understanding SystemTap errors, 71

unresolved type for identifier
parse/semantics error

understanding SystemTap errors, 70
unsafe embedded code in unprivileged script

parse/semantics error
understanding SystemTap errors, 69

Usage
options, stap, 8
running SystemTap scripts, 7
standard input, running scripts from, 8
stap, 7
stapdev, 7
staprun, 7
stapusr, 8

useful examples of SystemTap scripts, 39
user and kernel space, determining time spent in

examples of SystemTap scripts, 58

86

using arrays in simple computations
reading values from arrays

array operations, 27
Using SystemTap, 3
usrdev2kerndev()

examples of SystemTap scripts, 52

V
values, assignment of

array operations, 27
variable modified during 'foreach'

parse/semantics error
understanding SystemTap errors, 70

variable notations
SystemTap handler constructs

handlers, 25
variables

SystemTap handler constructs
handlers, 19

variables (local)
name, 19
sample usage

$count, 49
$return, 47, 51

VFS reads, tallying of
incrementing associated values

array operations, 28
vfs.file_operation

Events, 13
virtual file system reads (cumulative), tallying

processing multiple elements in an array
array operations, 29

virtual file system reads (non-cumulative), tallying
clearing arrays/array elements

array operations, 30

W
while loops

conditional statements
handlers, 24

whole device number (usage as a command-line
argument)

examples of SystemTap scripts, 52
wildcards in events, 14
writes/reads to a file, monitoring

examples of SystemTap scripts, 53

87

88

	SystemTap Beginners Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. We Need Feedback!

	Chapter 1. Introduction
	1.1. Documentation Goals
	1.2. SystemTap Capabilities
	1.3. Limitations of SystemTap

	Chapter 2. Using SystemTap
	2.1. Installation and Setup
	2.1.1. Installing SystemTap
	2.1.2. Installing Required Kernel Information Packages Manually
	2.1.3. Initial Testing

	2.2. Generating Instrumentation for Other Computers
	2.3. Running SystemTap Scripts
	2.3.1. SystemTap Flight Recorder Mode
	2.3.1.1. In-memory Flight Recorder
	2.3.1.2. File Flight Recorder

	Chapter 3. Understanding How SystemTap Works
	3.1. Architecture
	3.2. SystemTap Scripts
	3.2.1. Event
	3.2.2. SystemTap Handler/Body

	3.3. Basic SystemTap Handler Constructs
	3.3.1. Variables
	3.3.2. Target Variables
	3.3.2.1. Pretty Printing Target Variables
	3.3.2.2. Typecasting
	3.3.2.3. Checking Target Variable Availability

	3.3.3. Conditional Statements
	3.3.4. Command-Line Arguments

	3.4. Associative Arrays
	3.5. Array Operations in SystemTap
	3.5.1. Assigning an Associated Value
	3.5.2. Reading Values From Arrays
	3.5.3. Incrementing Associated Values
	3.5.4. Processing Multiple Elements in an Array
	3.5.5. Clearing/Deleting Arrays and Array Elements
	3.5.6. Using Arrays in Conditional Statements
	3.5.7. Computing for Statistical Aggregates

	3.6. Tapsets

	Chapter 4. User-space Probing
	4.1. User-Space Events
	4.2. Accessing User-Space Target Variables
	4.3. User-Space Stack Backtraces

	Chapter 5. Useful SystemTap Scripts
	5.1. Network
	5.1.1. Network Profiling
	5.1.2. Tracing Functions Called in Network Socket Code
	5.1.3. Monitoring Incoming TCP Connections
	5.1.4. Monitoring TCP Packets
	5.1.5. Monitoring Network Packets Drops in Kernel

	5.2. Disk
	5.2.1. Summarizing Disk Read/Write Traffic
	5.2.2. Tracking I/O Time For Each File Read or Write
	5.2.3. Track Cumulative IO
	5.2.4. I/O Monitoring (By Device)
	5.2.5. Monitoring Reads and Writes to a File
	5.2.6. Monitoring Changes to File Attributes
	5.2.7. Periodically Print I/O Block Time

	5.3. Profiling
	5.3.1. Counting Function Calls Made
	5.3.2. Call Graph Tracing
	5.3.3. Determining Time Spent in Kernel and User Space
	5.3.4. Monitoring Polling Applications
	5.3.5. Tracking Most Frequently Used System Calls
	5.3.6. Tracking System Call Volume Per Process

	5.4. Identifying Contended User-Space Locks

	Chapter 6. Understanding SystemTap Errors
	6.1. Parse and Semantic Errors
	6.2. Runtime Errors and Warnings

	Chapter 7. References
	Appendix A. Revision History
	Index

